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We propose a new efficient method to perform deconvolution of post-stacking post-migration seismic data. We
employ recurrent neural networks (RNNs) to obtain super resolution reflectivity images. The network is
designed and trained to take into account time and space relations. The robustness of the proposed method is
experimentally validated for both synthetic data and real data with challenging structures and difficult signal-
to-noise ratio (SNR) environment. We explore the system's behavior for different training and testing scenarios
and discuss potential problems for future research. We show that training with synthetic data of simple struc-
tures solely can yield enhanced and detailed real data inversion results. The proposed method can be applied
to large volumes of three-dimensional (3D) seismic data.
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1. Introduction

Acoustic waves imaging techniques are designed to give insight into
the internal structure of a medium.Whether themedia investigated are
human organs or tissues, transition zones in the bottom of the ocean or
the earth's surfaces, the objective is to be able to see, as clearly as possi-
ble, into amediumor an object, or, in otherwords, see intomaterial. One
of the challenges in echo-acoustic systems is to improve spatial resolu-
tion, both horizontally and vertically. Resolution limits are inherently
determined by the wave length and fundamentally limited by diffrac-
tion. Since acoustic waves propagate in relatively low velocities, small
wave lengths can be obtained at relatively low frequencies, exhibiting
large penetration depth. Therefore, the optimal resolution of an echo-
acoustic system is theoretically high. Yet, in practice, the actual
resolution is far below optimal. Possible reasons could be acquisition
conditions or limited data processing tools.

In different contexts the term super-resolution (Fernandez-Granda,
2013; Candès and Fernandez-Granda, 2013, Candès and Fernandez-
Granda, 2014; Donoho, 1992) is used as an operation that enhances
the resolution of a sensing system. Observing sub-wavelength features
(“breaking diffraction limits”) is a major challenge in imaging systems
in astronomy, seismology, medical imaging, microscopy, spectroscopy,
radar and more.

In reflection seismology our purpose is to reveal the structure and
properties of the earth subsurface layers. By resolving the fine details
of acquired seismic data we hope to be able to visually examine the in-
ternal structure of the subsurface, specifically geological structures such
ereg).
as layers, channels, traps and faults. Seismic images are of extreme im-
portance as means for locating mineral deposits and energy sources
(such as hydrocarbons, ores, water, geothermal reservoirs) (Sherif and
Geldart, 1983), obtaining geological information for engineering, geo-
thermal energy surveys, risk assessment of tsunamis, locating under-
ground activity for security purposes such as tunnel detection (Gurbuz
et al., 2006), and more.

When acquiring the data, a short acoustic pulse is transmitted into
the ground. An array of geophones, placed on the ground, receives the
acoustic pulses reflected back at layer boundaries. The data received is
then further processed into two-dimensional (2D) seismic data (Sherif
and Geldart, 1983). In a 2D section of seismic data, the horizontal direc-
tion is the spatial dimension referred to as in-line direction. The vertical
dimension is the two-way travel-time corresponding to a reflector's
depth in the ground.

Unfortunately, even after complex imaging procedures such as
stacking and migration (Biondi, 2006), a 2D section of seismic data
does not represent the actual 2D image of the subsurface. Each reflec-
tion is distorted during its propagation through the surface, in addition
to coherent and random noise. Namely, everything that is not a seismic
event that carries desirable information, including diffraction, multiples
etc. is considered as noise. Inversion of the seismic data is an ill-posed
problem primarily because the degrading pulse is band limited and
non-stationary. Moreover, as mentioned, the data is often degraded by
coherent and non-coherent interferences.

Many previous works try to simplify and solve the seismic inversion
problem by breaking the data into independent vertical 1D
deconvolution problems. An acoustic reflected pulse (the wavelet) is
modeled as a 1D time-invariant kernel. Considering that reflections
are generated at discontinuities in the medium impedance, the core
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assumption is that each recovered reflectivity channel is a sparse spike
train (Wiggins, 1978; Taylor et al., 1979; Riel and Berkhout, 1985;
Nguyen and Castagna, 2010; Zhang and Castagna, 2011; Gholami and
Sacchi, 2012). In other words, each seismic trace (a column in the seis-
mic 2D data) is modeled as a weighted superposition of one-
dimensional (1D) pulses degraded by additive noise. In an attempt to
estimate each reflectivity channel, some of thesemethods try to decom-
pose the seismic data by applying an ‘1-norm minimization constraint
to an optimization problem fitting the observed data to stable reflectiv-
ity solutions (Taylor et al., 1979; Riel and Berkhout, 1985; Nguyen and
Castagna, 2010; Zhang and Castagna, 2011; Gholami and Sacchi, 2012;
Pham et al., 2014; Repetti et al., 2015), assuming the smearing wavelet
is either known or estimated in the process (blind deconvolution).
Similarly to other atomic decomposition problems (Chen et al., 2001),
investigated in other applications in signal processing and machine
learning, such as ultasound (Bendory et al., 2016), image processing
(Elad, 2010) and compressed sensing (Donoho, 2006).

Obviously, treating 2D data as a puzzle of 1D unrelated data pieces is
inefficient. Multichannel seismic deconvolution methods (Idier and
Goussard, 1993; Mendel et al., 1981; Kaaresen and Taxt, 1998; Heimer
et al., 2007; Heimer and Cohen, 2009; 2008; Ram et al., 2010; Gholami
and Sacchi, 2013) are tailored to take into account more than one
trace in each channel estimation, thus using availabe spatial information
to promote horizontal continuity of the estimated reflectivity image and
to suppress noise. Heimer and Cohen, (2009) propose a variation of the
Viterbi algorithm (Forney, 1973), based onmodeling the reflectivity as a
Markov-Bernoulli random-field (MBRF). The idea is to search for the
most likely sequences of reflectors connected by defined legal transi-
tions. Ram et al., (2010) propose an algorithm for multichannel blind
deconvolution assuming aMarkov-Bernoulli-Gaussian (MBG) reflectiv-
ity model, where each reflectivity channel is estimated from the
corresponding observed seismic trace, and an estimate of adjacent
reflectivity channels.

The above inversion methods assume a time-invariant convolution
model. That is, the blurring wavelet is modeled as a 1D time-invariant
signal that does not change neither in time nor in space (i.e., in both
horizontal and vertical directions), thus ignoring time-depth variations
in the waveform. However, in practice a typical seismic wavelet is
time-variant.When seismic waves propagate through the earth subsur-
face their energy is absorbed by the media so that the wavelet's ampli-
tude decreases with depth. In addition, due to velocity dispersion
(i.e., different frequencies travel with different speeds) the wavelet's
shape changes and broadens with increased traveltime. An attempt to
make the seismic data stationary can be accomplished by amplitude
balancing and spectral balancing. To address this issue seismic inverse
Q-filtering (Kjartansson, 1979; Gelius, 1987; Hale, 1981; Wang, 2008)
is applied in an attempt to invert phase and amplitude distortions
of the propagating acoustic waves. Unfortunately, the process is
of heavy computational burden and often impractical. Nonstationary
deconvolution methods attempt to deconvolve the seismic data and
also compensate for waves attenuation. For example, the Gabor
deconvolution algorithm (Margrave et al., 2011), nonstationary sparse
reflectivity inversion (NSRI) (Chai et al., 2014), and nonstationary
deconvolution algorithm based on spectral modeling (Rosa and
Ulyrch, 1991). Some of these methods are applied to pre-stacked data.
In previous work (Pereg and Cohen, 2017) we show that the recovery
of the seismic reflectivity can be efficiently done by solving a simple
convex optimization problem based on earth Q attenuation model.
We derive theoretical bounds on the recovery error and on the localiza-
tion error, proving that estimated reflectors locations must be close to
true reflectors locations.

Recently seismic data processing techniques concentrate more on
3D data designed to recover a 3D reflectivity function representing
the earth's impulse response (Sherif and Geldart, 1983). In spite of
degraded results, 1D methods are still often applied to 3D data due to
practical convenience. In contrast, (Gholami and Sacchi, 2013) intro-
duce a fast 3D blind seismic deconvolution algorithm. The algorithm it-
erates between two stages: 3D reflectivity estimation and source
estimation. Also, in (Pereg et al., 2019) we propose a 3D time-variant
deconvolution where we assess the relation between a point in the
data and adjacent points, using discontinuity measures (Cohen and
Coifman, 2002; Cohen et al., 2006). This approach enables the use of
multiple traces in the seismic data for each channel estimation in
noisy environments and highly attenuating media.

Unfortunately most inversion methods rely on optimization prob-
lem solving, which often requires accurate estimation of many parame-
ters. In addition, when dealing with a large data set, or when real time
processing is required, practical implementation becomes impossible.
The computational complexity requires too much memory and
running-time, and the solution becomes infeasible.

As described above, currentmethods are computationally heavy and
sometimes complicated and impractical. Nowadays the extensive de-
velopment of deep neural nets (DNNs) has had a profound impact on
signal processing and image processing. In the field of exploration seis-
mology attempts have been made to use feed forward neural network
(FNN) to estimate normal moveout (NMO) velocity (CaldernMacas
et al., 1998), to automate velocity picking (Fish and Kusuma, 2005)
and first arrival picking (Murat and Rudman, 1992; McCormack and
Rock, 1993). Moreover, recurrent neural nets (RNNs) were successfully
used to estimate stacking velocity directly from seismic data for NMO
correction (Biswas et al., 2018). Li et al., (2019) propose a method to
bulid seismic velocity model from seismic data by DNNs. Various
works explore the use of neural nets for seismic interpretation. To
name a few, (Dorrington and Link, 2004) propose a genetic algorithm
that uses neural network training to find optimal seismic attributes for
well-log prediction; (Araya-Polo et al., 2017) and (Zhang et al., 2014)
propose using convolutional neural nets (CNNs) for automatic fault de-
tection from seismic data before migration; Yang et al., (2018) propose
the use of CNN for detection of salt dome boundaries from pre-stack
seismic data.

Generally speaking, DNN methods for image super-resolution usu-
ally employ some sort of architecture involving deep CNNs (e.g.
(Nehme et al., 2018; Dong et al., 2016)), mainly because CNNs are con-
sidered to be able to extract features of the data assuming stationarity.
Some of these methods employ a sparsity constraint. Inspired by the
success of CNNs in image classification, learning methods are now also
used to predict high resolution images from low resolution images.

In this paper, our main target is to reveal the ground truth reflectiv-
ity image. Our purpose is to develop an automatic, fast and efficientway
to perform seismic deconvolution. We propose the use of RNN to
deconvolve seismic data, in an attempt to address current issues in
existing methods. We believe that RNN fits this task most because it in-
corporates the use of temporal information as well as spatial informa-
tion. We suggest that each point in the estimated reflectivity can be
inferred from a relatively small patch in the seismic data, which we
will refer to as an analysis patch. For simplicity, we assume that the
mapping from each patch to a reflectivity point is similar. That is, the
data is stationary. As mentioned before, in practice this assumption
does not always hold. Yet, assuming a time invariant wavelet is helpful
for introducing the major concepts that affect the image quality, and is
standard in the literature. As will be presented, this simplification
does not necessarily lead to degraded results in comparison to recent
time-variant deconvolution algorithms, as long as ground attenuation
is not too aggressive.

The paper is organized as follows. In Section 2, we briefly review the
signal model and problem formulation, and provide background for re-
current neural networks. In Section 3, we describe the proposed
deconvolutionmethod using RNN. Section 4 describes numerical exper-
iments and real data results. Lastly, in Section 5, we conclude and dis-
cuss further study directions.



3D. Pereg et al. / Journal of Applied Geophysics 175 (2020) 103979
2. Problem formulation

2.1. Signal model

We consider an unknown 2D reflectivity signal R ∈ ℝLr×J

representing an image section of the internal earth structure. Assuming
a stratified structure,where reflections are generated at acoustic imped-
ance boundaries, each 1D channel r(l)[k], that is, a column in the reflec-
tivity, is formulated as a superposition of point sources. Namely, in the
discrete setting, assuming a sampling rate Fs, and that the set of delays
T={tm} lies on a grid k/Fs, k ∈ℤ, i.e., tm= km/Fs, a true reflectivity chan-
nel can be written as

r lð Þ k½ � ¼
X
m

cmδ k−km½ �; k∈ℤ; cm∈ℝ ð1Þ

for l = 1, …, J, where δ[k] denotes the Kronecker delta function (see
(Ricker, 1940)), and ∑m ∣cm∣ b ∞. K = {km} is the set of discrete delays
corresponding to the reflectors' locations.

Assuming a time-invariantmodel, an observed seismic discrete trace
of channel l, in the observed seismic 2D data S ∈ ℝLs×J, is of the form

s lð Þ k½ � ¼
X
n

r lð Þ n½ �g k−n½ � þw lð Þ k½ �; n∈ℤ ð2Þ

where g[k] is a known seismic wavelet of length Lg, andw[k] is an addi-
tive white Gaussian noise. Clearly Ls = Lr + Lg − 1. The wavelet is as-
sumed to be invariant in both time and space (i.e., both in horizontal
and vertical directions). Accordingly, in this study, our goal is to find
the true support K = {km} and spikes' amplitudes {cm} given the ob-
served seismic data. We also assume that the seismic signal is free of
multiple reflections (multiples are events that have undergone more
than one reflection (Sherif and Geldart, 1983)).

In matrix-vector form we can model the observed 2D seismic data
image S of size Ls × J as

S ¼ GR þW ð3Þ

whereG is a convolutionmatrix of size Ls × Lr such thatGk,l= g[k− l], and
W is an additive i.i.d white Gaussian noisematrix independent of R, with
zeromean and varianceσw

2 . Note thatwedonot impose anyprior knowl-
edge of the structure or possible patterns in the reflectivity image.

2.2. Recurrent neural network

A recurrent neural network (RNN) is a type of neural network that
employs feedback connections in addition to feedforward connections
between nodes of the graph (Hopfield, 1982; Hochreiter and
Schmidhuber, 1997). As known, in FNNs the signal travels in one direc-
tion - from input to output. In a recurrent network, the signal also
travels backwards. Consequently, the output signal at a current state de-
pends not only on current inputs, but also on outputs at previous states.
In other words the network “remembers” its previous decisions.

In general, given an input sequence x = [x0,x1,…,xL t−1], and a
corresponding output sequence y = [y0,y1,…,yL t−1], the RNN learns
the mapping f : x → y. At time step t, the output of the net can be
formulated as

yt ¼ ϕ WT
xyxt þWT

yyyt−1 þ b
� �

ð4Þ

where ϕ is an activation function,Wxy andWyy are weightmatrices and
b is the bias vector. At time step t=0 previous outputs are assumed to
be zero. The function ϕ can be one of the known activation functions
available such as sigmoid, rectified linear unit (ReLU) and hyperbolic
tangent. In our experiments we use the ReLU activation function, ReLU
(z) = max {0,z}. A single recurrent neuron, or a layer of recurrent neu-
rons, is considered as an RNN basic cell. In this work we used only one
hidden layer of recurrent neurons, but it can be extended into multiple
layers to form a deep neural network.

Now, suppose we have ni inputs at time step t, i.e., xt is of size ni × 1,
and nn neurons in anRNN cell.We knowWxy is of size ni × nn, andWyy is
of size nn × nn. During training of the network, in a single iteration we
update the weights for multiple sequences of data known as mini-
batch. The output of the whole mini-batch of m instances is

Yt ¼ ϕ XtWT
xy þ Yt−1W

T
yy þ b

� �
ð5Þ

where Yt is of size m × nn, and Xt is of sizem × ni.
As mentioned before, we say that the RNN hasmemory, because the

output at time step t depends on outputs of previous time steps. Due to
this property RNNs are often used to predict a future outcome. Since the
RNN takes a time-series input and produces a time-series output, it is
also applied to tasks where there is a need to apply temporal dynamic
behavior, for example: handwriting recognition or speech recognition.

Now, the output yt is of size nn × 1, and consists of non-negative
values only, which typically does not fit the task at hand. In order to
modify the size of the output to a desired size and allow negative values,
we wrap the cell with a fully connected layer with the desired final out-
put length M, which is written as

zt ¼ FC ytð Þ ð6Þ

such that zt ∈ ℝ1×M.
We denote by Z ∈ ℝLt×M the matrix of predicted outputs, which is the

concatenation of the vectors zt, t = 0, 1, …, Lt − 1 as columns. During
training, after each forward pass of a mini-batch, we update the weights
using Adam-optimization. The gradient is calculated using back-
propagation and the weights are updated with a defined learning rate
value. We denote the weight matrices and the bias as θ = {Wxy,Wyy,b}.
In our application, the loss function is the mean squared error

of the predicted output and the expected output. Suppose Zi and Ẑi

are the expected output during training and current system's
output, respectively, for input sequence xi. Denote the error matrix

as Ei ¼ Zi−Ẑi, then the loss term can be expresses as

J θð Þ ¼ 1
mMLt

Xm
i¼1

tr ET
i Ei

� �
ð7Þ

where superscript T denotes the transpose of a vector or a matrix,
and tr(⋅) denotes the trace of a square matrix. Other loss functions
and regularization terms could be suggested. For example, it is possi-
ble to add a regularization term in order to enforce a small ‘1 norm
of the output, because the solution is expected to be sparse. How-
ever, empirically, in our experience in this application, it does not
seem to necessarily improve the results. Controlling the sparsity of
the results in this manner in controversial, since it is not always
clear if the level of sparsity versus the level of details of the solution
is a result of true enhanced resolution or artifacts of an inaccurate
sparsity weight constraint.

3. Seismic recovery using RNN

Let us denote ~S ∈ ℝLr� J as the cropped seismic image aligned with
the reflectivity image R, such that each reflector's location across the
time-depth vertical axis corresponds to a the maximum value of a
shifted wavelet g[k − km] ∀ m in the seismic image ~S. In other words,
without loss of generality, assuming that g[0] ≥ g[k] ∀ k ∈ ℤ, that is,
the pick of the wavelet is at its center, then

~S k;n½ � ¼ S kþ Lg
2

� �
;n

� �



Fig. 1. Synthetic 2D recovery results: (a) Synthetic 2D reflectivity section; (b) Estimated 2D reflectivity, ρR;R̂ ¼ 0:96; (c) 2D noise free seismic data.
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Definition 1 (Analysis Patch): We define an analysis patch as a 2D
patch of size Lt × N enclosing Lt time (depth) samples of N consecutive
traces of the observed seismic image S. Assume {nL,nR ∈ ℕ : nL + nR =
N − 1}. Then the analysis patch associated with a point at location
(i, j) is

Ai; j ¼
~Si−Ltþ1; j−nL … ~Si−Ltþ1; jþnR

⋮ ⋱ ⋮
~Si; j−nL … ~Si; jþnR

0
@

1
A ð8Þ

An analysis patch Ai,j is associated with a pixel Ri,j in the reflectivity
image. To produce a point in the reflectivity Ri,j, we set the input to
the RNN as

x ¼ Ai; j ð9Þ

Each time step input is a group of N neighboring pixels of the same
corresponding time (depth). In other words, in our application ni = N
and

xt ¼ ~St; j−nL ;…; ~St; jþnR

h iT
ð10Þ
Fig. 2. A zoom into Fig. 2: (a) Synthetic 2D reflectivity section; (
We set the size of the output vector zt to one expected pixel (M=1),
such that Z is expected to be the corresponding reflectivity segment,

Z ¼ Ri− Lt−1ð Þ; j;…;Ri; j
� 	T ð11Þ

Lastly, we ignore the first Lt − 1 values of the output Z and set the

predicted reflectivity pixel R̂i; j as the last one, i.e., zLt.
The analysis patch moves through the image and produces all ex-

pected reflectivitypoints in the samemanner,whichmeanseachanalysis
patch and a corresponding reflectivity segment are an instance for the
net. The size and shape of the analysis patch defines the geometrical dis-
tribution of traces and samples to be used for each point's computation.
Typically we set Lt to be the approximated length of the wavelet g[k].
Thiswayweensure estimationof eachpoint relies on suffice temporal in-
formation as well as spatial information. We believe RNN fits this task
best because it is able to “remember” both in space and time dimensions.

The solution could be generalized to 3D images R3D ∈ ℝLr×J
x
×J

y

using a 3D analysis volume of size Lt × Nx × Ny. The analysis volume
is then defined by Nx, Ny, the number of traces taken into account
along the in-line and cross line axes, and Lt time-depth samples
along the vertical axis. It can be defined to associate with a point in
b) Estimated 2D reflectivity; (c) 2D noise free seismic data.

Image of Fig. 2
Image of Fig. 1


Fig. 3. Synthetic 2D recovery results: (a) Synthetic 2D reflectivity section; (b) Estimated 2D reflectivity, ρR;R̂ ¼ 0:74; (c) 2D seismic data (SNR = 5 dB).
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its center, or in an asymmetrical manner. In a similar manner to the
2D configuration, for each reflectivity output voxel, the analysis
volume would be an instance input to the RNN. Moving the analysis
volume along the 3D observation image produces the entire 3D
estimated reflectivity volume.
Fig. 4. Real data inversion results: (a) Seismic data; (b) Estimat
4. Experimental results

In this section, we provide synthetic and real data examples demon-
strating the performance of the proposed technique. To implement the
RNN we used TensorFlow (Abadi et al., 2015).
ed reflectivity; (c) Reconstructed seismic data, ρS;Ŝ ¼ 0:87.

Image of Fig. 4
Image of Fig. 3


Fig. 5. Synthetic reflectivity and seismic data for RNN training: (a) Synthetic 2D reflectivity section of horizontal layers only; (b) 2D seismic data.
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4.1. Synthetic data

First, we constructed a synthetic training and test data sets, simulat-
ing a 2D reflectivity of size Lr × J=600× 800. In otherwords, the reflec-
tivity consists of 800 traces, each of 600 samples, with sampling interval
of Ts = 4ms. We generate each 2D reflectivity R according to a Markov-
Bernoulli random-field (MBRF) model, as described in (Ram et al.,
2010). Namely, we model the reflectivity as a Bernoulli-Gaussian
process. Assume Q is a matrix of location variables, indicating the posi-
tion of layers boundaries. Accordingly, qk,j = 1 if a reflector exists, and
qk,j=0 otherwise. In addition the transitionmatrices T⧸, T−, T⧹ indicate
whether a reflector belongs to a layer boundarywhose orientation is di-
agonally ascending, horizontal, or diagonally descending. We denote
the transition variables as tk,j⧸ , tk,j−, tk,j of the (k, j) positions of T⧸, T−, T⧹.
Let p(⋅) denote a probability distribution function, we recall (Ram
et al., 2010) the MBRF has the following properties:
Fig. 6. Synthetic reflectivity and seismic data for RNN training: (a) Synthetic 2D refle
1. Separability:

p t⧸k; j; t
−
k; j; t

⧹
k; j

� �
¼ p t⧸k; j

� �
p t−k; j
� �

p t⧹k; j
� �

2. The jth columns of Q, T⧸, T−, T⧹, are white and Bernoulli distributed
marginally from the rest of the field.

3. The Bernoulli distributions has the following parameters

λ ¼ p qk; j ¼ 1
� �

; μ⧸ ¼ p t⧸k; j ¼ 1
� �

μ− ¼ p t−k; j ¼ 1
� �

; μ⧹ ¼ p t⧹k; j ¼ 1
� �
ctivity section of horizontal layers and two apparent faults; (b) 2D seismic data.

Image of Fig. 6
Image of Fig. 5


Fig. 7. Real data inversion results: (a)–(b) Estimated reflectivity when RNN is trained with the horizontal layers only, and corresponding reconstructed seismic data, ρS;Ŝ ¼ 0:77;

(c)–(d) Estimated reflectivity when RNN is trained with the horizontal layers and two faults, and corresponding reconstructed seismic data, ρS;Ŝ ¼ 0:88; (e)–(f) Estimated reflectivity

by 3D time-variant deconvolution (Pereg et al., 2019), and corresponding reconstructed seismic data, ρS;Ŝ ¼ 0:91.
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Image of Fig. 7
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4. The probability for discontinuities along layers is given by

ε ¼ p qk; j ¼ 1jt⧸k; j ¼ 0; t−k; j ¼ 0; t⧹k; j ¼ 0
� �

5. λ is related to {μ⧸,μ−,μ⧹,ε} by

λ ¼ 1− 1−μ⧸
� �

1−μ−ð Þ 1−μ⧹
� �

1−εð Þ

representing the sparsity of the expected reflectivity.
We generate reflectivity images with {μ⧸ = μ⧹ =0.016, μ− =0.066,

ε=0.0005, λ=0.0961}. A test reflectivity image is depicted in Fig. 1(a).
Then, we build the seismic data as described in (2). The simulated seis-
mic data is shown in Fig. 1(c). In our experiments we assume an initial
source waveform g(t) defined as the real-valued Ricker wavelet

g tð Þ ¼ 1−
1
2
ω2

0t
2


 �
exp −

1
4
ω2

0t
2


 �
ð12Þ

ω0 is themost energetic (dominant) radial frequency (Wang, 2015),
that plays a role of a scaling parameter, determining the width of the
pulse. In this example the initial wavelet was a Ricker wavelet with
ω0 = 50π, i.e., 25Hz, which is relatively a broad wavelet, so that the in-
version process would be relatively more challenging. The number of
traces taken into account in RNN's prediction for each pixel outcome
is N = 3, and Lt = 30, in a symmetrical manner such that nL = nR =
1. In this case, training converges after 93,700 iterations with learning
rate of 0.0001. Fig. 1(b) presents the estimated reflectivity image
using the trained net. To asses the accuracy of the results we calculate
the correlation coefficient between the ground truth known synthetic
reflectivity image to the predicted reflectivity,

ρR̂R ¼ r̂Tcsrcs
r̂csk k2 rcsk k2

where rcs and r̂cs are column-stack vectors of the reflectivity images R
and R̂ respectively, and ∥ ⋅ ∥2 is the ‘2 norm. The correlation coefficient,
between the original reflectivity and the estimated reflectivity, achieved
by RNN deconvolution is ρR;R̂ ¼ 0:96, indicating promising expected

performance of the RNN in this task. A zoom-into this example is
depicted in Fig. 2.

To evaluate the recovery in noisy environment we added white
Gaussian noise. Fig. 3(c) presents seismic data with SNR=5dB. The net
was trained with noisy data with the same SNR level. The source reflec-
tivity and the predicted reflectivity are shown in Fig. 3(a),
(b) respectively. The correlation coefficient in this case is ρR;R̂ ¼ 0:74.

As can be seen in both examples, we used large images of consider-
able complex structure. Since the net is designed to process small
Fig. 8. A zoom into Fig. 8: (a) Estimated reflectivity by 3D time-variant deconvolution (Pereg
analysis patches, it entails low complexity and is able to deconvolve
the entire image in less than a minute. Generally speaking, the method
is fast and efficient and therefore is suitable to large volumes of data. The
proposed method could be easily extended to 3D seismic images, or
other imaging data, such as: ultrasound imaging.

We conducted various experiments with the proposed system, with
different parameters, which have led us to the following conclusions.

1. The accuracy of the prediction is insensitive to the exact sparsity of the
training set, as long as the net has been trained with enough exam-
ples of different data patterns in an analysis patch, and that the
data is sparse.

2. In contrast, the accuracy of the prediction is highly sensitive to cor-
rect choice of the wavelet's scaling parameter ω0 for the training
data. Thewavelet's dominant frequencyω0 can be estimated directly
from the seismic data via spectral estimation (Zhang and Ulrych,
2002). Inaccurate choice of ω0 results in degraded results.

3. Experimental results imply that the optimal choice for Lt is the
approximated length of the corresponding wavelet.

4. Increasing the sampling rate Fs leads to degraded results as well,
usually with many false spikes adjacent to each true spike location.
Possible reasons can be due to higher computational complexity or
“information overload” that tends to “confuse” the net. Essentially,
any supervised learning method aims to capture the relevant infor-
mation from each input variable and efficiently represent it in the
output label. Information theoretic concept of data processing
inequality (Cover and Thomas, 2006) reminds us that by processing
the input, the network is only able to extract information. It is impos-
sible for the net to create new information. Increasing the sampling
rate, assuming that the network is able to recover higher frequencies
that were mitigated during the waves propagation, data acquisition
and imaging, is an unreasonable assumption, and therefore leads to
degraded results.

5. Similarly, training with lower SNR levels or seismic data with attenu-
ation according to Q earth model (see (Pereg and Cohen, 2017; Pereg
et al., 2019)), does not lead to increased performance. The net is
unable to learn the different patterns of a set of non-stationary wave-
lets corresponding to each reflector location (see (Pereg and Cohen,
2017)), as well as how to ignore noise interferences.

6. The number of traces along the spatial dimension N, in the analysis
patch is user-dependent and can be determined according to the re-
quired resolution, the inline-spacing, and the type of geological fea-
tures that is of interest to the interpreter. Increasing N, the number
of neighboring traces taken into account, decreases the sensitivity
to noise at the expense of decreasing the sensitivity to small-scale
discontinuities.

4.2. Real data

We applied the proposed method, to real seismic data from a small
land 3D survey (courtesy of GeoEnergy Inc., TX). The time interval is
et al., 2019); (b) Estimated reflectivity by RNN trained with horizontal layers and faults.

Image of Fig. 8
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4ms; inline and cross line trace spacing is 25m. A small sub-imagewith
inline distance of 10 km (401 traces) is used for demonstration. Each
trace is 1.476 s in duration (369 samples). Fig. 4(a) shows a vertical
cross section through the seismic data. As can be seen, the data chosen
is non-stationary and of complex structure with multiple faults.

Assuming an initial Rickerwaveletwithω0=50π (25Hz). The recov-
ered reflectivity using anRNNof 1000 neurons,with an analysis patch of
size 30 × 3 is shown in Fig. 4(b). Essentially, each reflectivity pixel is re-
covered by taking into consideration its relations to neighboring pixel:
Lt− 1 preceding pixels of the same trace (spatial location) and 2Lt pixels
from two neighboring traces - preceding and subsequent (in space).

Here, training data is synthetic data only. By conducting various ex-
periments we have reached to the conclusion that training based on
real data labeled by another algorithm, or combining both synthetic
and real data leads to degraded results. In this example, we used for
training simulated data with similar attributes as the data shown in
Fig. 3. As mentioned before, estimating ω0 accurately is of extreme im-
portance. The seismic data reconstructed from the estimated reflectivity
is shown in Fig. 4(c). We assume the given seismic data is noise-free.
Since the ground truth is unknown, in order to evaluate the results in
real data we build an estimated seismic data from the predicted reflec-
tivity. Namely, we compute Ŝ ¼ GR̂, and then find the correlation coef-
ficient between the reconstructed data to the given seismic data. In this
example we have ρS;Ŝ ¼ 0:87.

In order to analyze the net, and in hope of getting a better under-
standing of the net's learning process, we conducted the following ex-
periment. We trained a net of 1000 neurons as described above, with a
synthetic 2D reflectivity of size 248 × 30 of horizontal layers only, as
depicted in Fig. 5. Thenwe tested the net with the same seismic data il-
lustrated in Fig. 4(a). The recovered reflectivity and the reconstructed
data are shown in Fig. 7(a) and (b) respectively. In this test the
net achieved a score of ρS;Ŝ ¼ 0:77. Then, we trained the net with a syn-

thetic data set, simulating 2D reflectivity with two apparent faults - one
vertical fault, and one diagonal fault, as depicted in Fig. 6. The training re-
flectivity consists of 30 traces, each of 128 samples, with sampling inter-
val of Ts = 4ms. We tested again for the real data. Results are shown in
Fig. 7(c) and (d). In this test we got ρS;Ŝ ¼ 0:88. Fig. 7(e) and (f) present

an estimated reflectivity of this seismic data section using recent 3D
time-variant seismic deconvolution algorithm (Pereg et al., 2019), and
the corresponding reconstructed data which achieved ρS;Ŝ ¼ 0:91 .

Fig. 8: shows a zoom into the reflectivity sections in time range 0.3–0.7 s.
Visually examining these reflectivity sections and taking into ac-

count the qualitative correlation score, it can be postulated that 77% of
the information needed for the net to correctly estimate seismic reflec-
tions resides in its ability “to see” zero dip reflections (horizontal
layers). Moreover, learning only two types more of possible structures
- horizontal and diagonal faults, the estimated reflectivity exceeds the
reflectivity achieved by training with complex structure, implying that
applying more complex scenarios during training only “confuses” the
net. Not only that, but when comparing to other novel time-invariant
deconvolution algorithm, in spite of quantitative slightly lower score
(correlation of 0.88 vs. 0.91), we can see that layer boundaries in the
RNN's estimate are distinct and smooth. Both structural features (such
as faults) and stratigraphic features (such as channels) can be observed
in the images. Also, the reconstructed seismic data fits to the original
given observation. These results are interesting because we would
have expected that by training only with simple horizontal layers and
simple faults, we would be underfitting the system. One would expect
themodel to be too simple for the net to be able to learn the underlying
complex structures of the data. But comparing with training with com-
plex structure, or in comparison to time-invariant deconvolution (Pereg
et al., 2019), we observe more details in the RNN's estimate when
trained with horizontal layers and faults. Yet, estimation does deterio-
rate in deeper layers due to attenuation and dispersion effects, which
are not taken into account by the RNN.
Implementation of the above method entails low computational
complexity. Training and evaluation were run on a standard worksta-
tion equipped with 32 GB of memory, an Intel(R) Core(TM) i7 -
6850 K CPU @ 3.60 GHz, and a NVidia GP102 GeForce GTX 1080 Ti
GPU, with 12 GB of video memory. Network training for the last exam-
ple converges after 17,000 iterations in 10 min only, and the net could
be easily applicable to large volumes of data and can be adequate for
real-time applications.

5. Conclusions

Recent advances in seismic acquisition has lead to a growing de-
mand to process large amounts of 3D seismic data, in an attempt to pro-
vide high resolution subsurface images. Numerous algorithms were
developed in an effort to address this problem, but further progress is
still necessary. Current methods are often able to produce high-quality
images usually depending on correct estimation of many parameters
and in the expense of heavy computational burden.

In this work, we have presented a multichannel seismic
deconvolutionmethod based on the use of RNN. Namely, the RNN is de-
signed to map a patch of seismic data into a point in the super-resolved
reflectivity by learning spatial and temporal connections between close
data samples. The performance of our method is demonstrated via ex-
periments with both synthetic and real data. We also presented advan-
tages and disadvantages comparing with recent 3D time-variant
deconvolution method. Interestingly, experimental results imply that
training using synthetic data of simple structure is superior to training
using real data results of other algorithms, complex synthetic data, or
a combination of both. Moreover, we do not assume any specific prior
regarding the structure of the data. In addition, we have discussed the
effect of several characteristics of the data, such as: sparsity, sampling
rate and the wavelet's dominant frequency, on the predicted reflectiv-
ity. The proposedmethod is fast and efficient. Therefore, it can be appli-
cable to 3D seismic data as well as other imaging data, such as medical
ultrasound imaging.

Future research in exploration seismology can adapt the algorithm
to handle non-constant Q layers model, and perhaps explore the use
of discontinuity measures and different wavelets in the learning pro-
cess. A blind or semi-blind deconvolution solution can also be investi-
gated. In terms of the RNN's implementation considering skipping
connections (Orhan and Pitkow, 2017), and using dropout (Srivastava
et al., 2014) to avoid overfitting can also be studied.
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