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Abstract— In sparse coding, we attempt to extract features of
input vectors, assuming that the data is inherently structured as
a sparse superposition of basic building blocks. Similarly, neural
networks perform a given task by learning features of the training
dataset. Recently, both data- and model-driven feature extracting
methods have become extremely popular and have achieved
remarkable results. Nevertheless, practical implementations are
often too slow to be employed in real-life scenarios, especially
for real-time applications. We propose a speed-up upgraded
version of the classic iterative thresholding algorithm (ITA),
which produces a good approximation of the convolutional sparse
code (CSC) within 2–5 iterations. The speed advantage is gained
mostly from the observation that most solvers are slowed down
by inefficient global thresholding. The main idea is to normalize
each data point by the local receptive field energy, before applying
a threshold. This way, the natural inclination toward strong
feature expressions is suppressed, so that one can rely on a
global threshold that can be easily approximated, or learned
during training. The proposed algorithm can be employed with
a known predetermined dictionary, or with a trained dictionary.
The trained version is implemented as a neural net designed
as the unfolding of the proposed solver. The performance of
the proposed solution is demonstrated via the seismic inversion
problem in both synthetic and real data scenarios. We also
provide theoretical guarantees for a stable support recovery,
namely we prove that under certain conditions, the true support
is perfectly recovered within the first iteration.

Index Terms— Convolutional neural network (CNN), convo-
lutional sparse coding (CSC), deep learning, seismic inversion,
sparse reflectivity.

I. INTRODUCTION

IN SPARSE coding, we attempt to decompose an observa-
tion signal y ∈ R

N×1 into its building blocks (atoms) [1].
Namely, the sparse representations model [2] assumes a signal
y ∈ R

N×1 that can be formulated as a sparse superposition of
atoms. Mathematically speaking, we assume that the observa-
tion signal y obeys

y = Dx (1)
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where D ∈ R
N×M is a matrix called the dictionary that consists

of the atoms di ∈ R
N×1, i = 1, . . . , M , as its columns,

and x ∈ R
M×1 is the sparse vector of the atom’s weights.

Generally, we do not impose any relation between N and M .
That is, the dictionary could either be complete (N = M),
over-complete (N < M), or under-complete (N > M).

Over the years, great efforts have been invested in finding
sparse solutions to (2). Breaking down a signal into its building
blocks has become a popular task in many fields related to
signal processing, such as image processing [2], computer
vision [3], compressed sensing [4], radar [5], ultrasound imag-
ing [6], seismology [7]–[9], visual neurosciense [10], [11], and
more. Moreover, from a certain perspective, neural networks
can be viewed as an unfolding of an iterative sparse coding
solver [12]. In a sense, deep neural nets (DNNs) are trained
to seek the atom’s weights, specifically convolutional neural
networks (CNNs) [13], which are trained to find a set of filters
tailored to perform a classification or a regression task at
hand. However, in many real-time applications, such as pattern
recognition, sparse coding is still a bottleneck in terms of
inference time. Most often, a sparse code is required for every
image patch. Consequently, many attempts have been made to
pursue faster methods for sparse coding.

The iterative shrinkage thresholding algorithm (ISTA) [14]
is one of the most popular algorithms for sparse coding.
Despite its simplicity, ISTA is considered as a slow algorithm.
Over time, faster extensions have been suggested, such as
fast-ISTA (FISTA) [15], learned-ISTA (LISTA) [16], and
ada-LISTA [17]. LISTA [16], for example, uses a learned
substitute dictionary, and ada-LISTA [17] incorporates an
adaptive threshold, where the first threshold corresponds to
the maximal feature weight in the data. Then, the thresholds
are gradually decreasing at each iteration. Since the seminal
idea of LISTA—to unroll the iterative algorithm into feed-
forward layers—was first proposed, many similar sparse cod-
ing model-based deep learning methods have been proposed,
such as ADMM with CNN [18], ADMM-CSNet [19], and
FISTA-Net [20]. These methods are designed to provide
accurate and fast reconstruction compared with other deep
learning methods.

Inspired by the classic iterative thresholding algorithms
(ITAs), in this work, we propose a fast alternative algorithm
that produces a good approximation of a convolutional sparse
code (CSC). Most solvers are slowed down by the use of one
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global threshold (bias) to detect each local feature shift along
the signal, or a predetermined constant local threshold. This
way, even if the signal (or the input batch) is normalized, when
we apply a threshold at each iteration, if the threshold is too
high, weak expressions are annihilated, and strong expressions
can “cast a shadow” over low-energy regions in the signal,
which can be interpreted as false-positive support locations.
On the other hand, if the threshold is very small, as often is the
case in ISTA, many iterations are required to compensate for
false detections in early iterations, especially in the presence of
noise, and in real-time applications due to model perturbations.

Alternatively, we propose to normalize each data point by
a locally focused data energy measure, before applying a
threshold. In other words, each receptive field of the data is
scaled with respect to the local energy. This way even when the
data is inherently unbalanced, we can still use a common bias
for all receptive fields, without requiring many iterations that
are usually required in order to globally detect the features sup-
port. The proposed algorithm can be employed with a known
predetermined dictionary and global fixed bias terms for each
iteration, or with a learned dictionary and learned bias terms.
In practice, the trained version is implemented as a small
recurrent CNN that corresponds to a few unfolded iterations
of the proposed method. An approximate solution is produced
within only 2–5 iterations, that is, to our knowledge, the state-
of-the-art performance in terms of speed and computational
complexity versus accuracy error.

We further demonstrate the applicability of the proposed
solution to seismic inversion, via experimental results with
real data and synthetic data, demonstrating that even if the
mutual coherence of the dictionary is relatively high, the first
iteration of the method accurately detects at least 70% of
the features weights. The following few iterations make the
required corrections. We performed extensive synthetic data
and real data numerical experiments, in order to verify the
robustness of the method in noisy and attenuating environment.
We also prove that under sufficient separation and sufficiently
low mutual coherence, the first iteration of our method is
guaranteed to perfectly recover the true support. Furthermore,
in our opinion, the proposed predictor can be potentially
included in learning systems in many applications, such as
recognition systems and biomedical-imaging super-resolution.

The main contribution of this work is a highly efficient
method for fast CSC approximation. We also propose a
learning-based (data-driven) variation of the proposed method.
The performance is demonstrated via extensive numerical
experiments conducted with seismic real data as well as
with synthetic data. Furthermore, we prove that the proposed
method achieves a reliable solution under sufficient separation
or low mutual coherence.

The remainder of this article is organized as follows.
Section II provides the necessary background for sparse rep-
resentations CSC and ITAs. Section III describes the seismic
inversion problem. In Section IV, we present the proposed
method and its theoretical guarantees. Sections V–VI intro-
duce synthetic and real data experimental results. Section VII
proposes a learned version of the proposed algorithm
and demonstrates its employment experimentally. Finally,

Section VIII concludes and discusses future research
directions.

II. BACKGROUND AND RELATED WORK

A. Sparse Representations

The sparse representations model [2] assumes a signal y ∈
R

N×1 that is formulated as a sparse superposition of atoms

y = Dx (2)

where D ∈ R
N×M is a matrix called the dictionary,

built of the atoms di ∈ R
N×1, i = 1, . . . , M , as its

columns, and x ∈ R
M×1 is the sparse vector of the atoms

weights.
An immense amount of work has been dedicated to sparse

coding, that is, to the recovery of x. To find the sparsest
solution, the one with the smallest �0-norm, we attempt to
solve

(P0) : min
x
�x�0 s.t. y = Dx (3)

where �x�0 denotes the number of non-zeros in x. Since P0

has been proved to be, in general, NP-hard [21], we often
replace the �0-norm with the �1-norm

(P1) : min
x
�x�1 s.t. y = Dx (4)

where �x�1 �
∑

i |xi |. In noisy environment or when some
error is allowed, we attempt to solve

(P1,ε) : min
x
�x�1 s.t. �y − Dx�2 ≤ ε (5)

where �x�2 �
√∑

i x2
i . Under certain conditions, the sparsest

solution to P0 and P1 has been proved to be unique and can
be retrieved using practical algorithms, such as orthonormal
matching pursuit (OMP) or basis pursuit (BP), depending
on the dictionary’s properties and the sparsity of x. Namely,
under the assumption that �x�0 < 1

2 (1 + 1
μ(D)

), where μ(D)
is the mutual coherence defined as the maximal correlation
coefficient between two dictionary atoms

μ(D) = max
i �= j

∣∣dT
i d j

∣∣
�di�2 · �d j�2

(6)

the true sparse code x can be perfectly recovered [22].
One of the most intuitive ways to recover x is to project

y on the dictionary and then extract the atoms with the
strongest response by taking a hard or a soft threshold.
In other words, the solution is a closed-form solution, for-
mulated as x = Hβ(DT y) or x = Sβ(DT y), where the hard
threshold and the soft threshold operators are, respectively,
defined as

Hβ(z) =
{

z, |z| > β

0, |z| ≤ β

and

Sβ(z) =

⎧⎪⎨
⎪⎩

z + β, z < −β

0, |z| ≤ β

z − β, z > β.
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Note that the rectified linear units (ReLUs) activation func-
tion commonly used in DNNs satisfies

ReLU(z − β) = max(z − β, 0) = S+β (z) �
{

0, z ≤ β

z − β, z > β.

Therefore, the soft threshold solution can also be written as

x = S+β (DT y)− S+β (−DT y)

= ReLU(DT y − β)− ReLU(−DT y − β).

However, simple thresholding is guaranteed to recover the
true support only under a more restrictive assumption that
�x�0 < 1

2 (1+ 1
μ(D)

|x|min
|x|max

), where |x|min and |x|max are the min-
imum and maximum values of the vector |x| on the support,
respectively, implying that when the data is unbalanced, this
approach is bound to collapse.

Papyan et al. [12] show that the forward pass of CNNs is
equivalent to the layered thresholding algorithm designed to
solve the CSC problem. A convolutional layer’s forward pass
is guaranteed to recover a sparse estimate of the underlying
representations of an input signal, only for dictionaries with
very low mutual coherence, and when the ratio between the
maximal and minimal spikes’ amplitudes in absolute value
is close to one. In addition, the �0,∞ of the true solution x,
that is, the required maximal number of non-zeros in a
stripe of coefficients contributing to a data point, depends on
the ratio (|x|min/|x|max). Therefore, under these very limiting
conditions, when applied to real-life applications, such as the
seismic reflectivity estimation problem, for which the mutual
coherence of the dictionary is very high and the seismic dataset
is inherently unbalanced (i.e., with peak and trough amplitudes
that are not close), this course of action is inadequate.

One may also wonder whether the dictionary D is known,
and if not, then how and under what conditions could one find
the atoms or features concerning his or her specific problem.
Some of these questions are addressed in Section VII and in
Appendixes A and C.

B. Iterative Shrinkage Algorithms

Consider the cost function

f (x) = 1

2
�y − Dx�2

2 + λ�x�1.

Following majorization minimization (MM) strategy, we can
build a surrogate function [2], [14]

Q(x, xθ ) = f (x)+ d(x, xθ)

= 1

2
�y − Dx�2

2 + λ�x�1 + c

2
�x − xθ�2

2

− 1

2
�Dx − Dxθ�2

2.

The parameter c is chosen such that the added expression

d(x, xθ ) = Q(x, xθ )− f (x) = c

2
�x − xθ�2

2 −
1

2
�Dx − Dxθ�2

2

is strictly convex, requiring its Hessian to be positive definite,
cI − DT D ≺ 0. Therefore c > �DT D�2 = λmax (DT D), that
is, greater than the largest eigenvalue of the coherence matrix
DT D. In essence, the term d(x, xθ ) is a measure of proximity

to a previous solution xθ . If the vector difference x − xθ is
spanned by D, the distance drops to nearly zero (we usually
choose c = �D�2

2). Then, we remain with a minimization over
the original cost function f (x). Alternatively, if D is not full
rank and the change x − xθ is close to the null space of D,
the distance is simply the approximate Euclidean distance
between the current solution to the previous one.

The surrogate function Q(x, xθ ) obeys equality at xθ :
Q(xθ , xθ ) = f (xθ ). It is upper-bounded by the origi-
nal function: Q(x, xθ ) ≥ f (x) ∀x, and tangent at xθ :
∇Q(x, xθ )|x=xθ

= ∇ f (x)|x=xθ
. Hence, the solution sequence

is guaranteed to yield decreasing values of the original cost
function f (x) because

f (xθ+1) ≤ Q(xθ+1, xθ ) = min
x

Q(x, xθ )

≤ Q(xθ , xθ ) = f (xθ ).

Following the MM strategy, that is, minimizing Q(x, xθ )
instead of f (x), the sequence of iterative solutions is generated
by the recurrent formula

xθ+1 = arg min
x

Q(x, xθ )

where θ ∈ N is the iteration index. Therefore, we can find a
closed-form solution for its global minimizer

xθ+1 = S λ
c

(
1

c
DT (y − Dxθ )+ xθ

)
.

Intuitively, this sequence can be interpreted as an iterative
projection of the dictionary on the residual term, starting from
the initial solution that is simply a thresholded projection of
the dictionary on the observation signal (assuming x0 = 0)

xθ+1 = S λ
c

⎛
⎜⎝1

c

project on dictionary︷︸︸︷
DT (y− Dxθ )︸ ︷︷ ︸

residual term

+ xθ︸︷︷︸
add to current solution

⎞
⎟⎠.

Under the assumption that the constant c is large enough,
it was shown in [14] that the above algorithm is guaranteed
to converge to its global minimum. Hence, we are guaranteed
to recover a local minimum of f (x). This approach can also
be viewed as a proximal-point algorithm [23], or as a simple
projected gradient descent algorithm.

It is worth mentioning that ISTA can also be viewed as
a recurrent neural net (RNN) unfolded through time [12].
As previously stated, despite its simplicity, ISTA is con-
sidered as a slow algorithm. Over time, faster extensions
have been suggested, such as FISTA [15], LISTA [16], and
Ada-LISTA [17]. We refer the reader to the corresponding
references for further details.

C. Convolutional Sparse Coding

In the special case where D is a convolutional dictionary,
the task of extracting x is referred to as CSC. In this case,
the dictionary D is a convolutional matrix constructed by
shifting a local matrix of m filters in all possible positions.
Equivalently, let us assume a convolutional dictionary that is
structured as a concatenation of m convolution matrices

D = [D1,D2, . . . ,Dm] (7)
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where Dp ∈ R
Ly×Lx , p ∈ N, 1 ≤ p ≤ m, is the convolution

matrix of the p’th filter denoted by d̃p ∈ R
Ld×1 shifted in all

possible directions. We assume a linear convolution, such that
Ly = Lx + Ld − 1. Accordingly, the sparse weights vector
x ∈ R

mLx×1 obeys

x = [xT
D1

, xT
D2

, . . . , xT
Dm

]T
(8)

where Lx is the support size for each of the filters, and
xDp , p ∈ N, 1 ≤ p ≤ m, is the sparse weights vector
corresponding to the pth filter shifts along the signal. Overall,
there are M = mLx atoms in the dictionary, such that the i th
atom di , i = (p − 1)Lx + l, l ∈ N, 1 ≤ l ≤ Lx, is the pth
filter’s shift to the lth support location.

In the forward pass of each layer in a CNN, the input
is convolved with a set of learned filters. Then, we apply
a pointwise nonlinear function to the computed feature map
summed with a bias term. This process can be viewed as
equivalent to the layered thresholding algorithm for the CSC
model [12]. In other words, the forward pass of a CNN is
inherently based on revealing an estimate of a hidden CSC of
a given signal.

Since CNNs were inspired by the study of the visual brain
cortex, the term receptive field is borrowed to describe a
small limited local visual area that a neuron reacts to [24].
In other words, in CNNs, a neuron located in a certain layer
is connected only to the output of neurons in a limited small
area of the previous layer. Considering (7), since the i th atom
of dictionary Dp is the pth filter shifted to the lth support
location, having a small restricted support of Ld samples
around l in the data, each of these small local support areas
is referred to as a receptive field.

D. Signature Dictionary

The signature dictionary [25] is essentially a convolutional
dictionary of a single filter (m = 1). In this case, we attempt
to represent a signal solely by one small kernel. An elaborated
discussion on the learning of the signature dictionary and its
signal representation can be found in [25].

III. PROBLEM FORMULATION

In this section, the mathematical formulation focuses on the
settings of the seismic inversion task. Nonetheless, the model
can be applied to a wide range of applications (such as medical
imaging, computer vision, pattern recognition, and so on)
and can be incorporated in any system employing CNNs and
RNNs. The method is not restricted to signature dictionaries
and can be applied to convolutional dictionaries with more
than one filter and to non-stationary convolutional operators
as described below.

A. Signal Model

Consider an unknown 2-D reflectivity signal X ∈ R
Lx×J

of J channels representing the true reflectivity cross section.
We assume a layered subsurface structure and acoustic
wave propagation, where reflections are generated at acoustic
impedance boundaries. Hence, each hidden column of index

l in the reflectivity image is a 1-D signal x(l) ∈ R
Lx×1 inde-

pendently modeled as a sparse weights vector. In a discrete
setting, we consider a set of two-way travel times T = {tm}
lying on a grid kTs, k ∈ Z, where tm = km Ts, with a sampling
rate Fs = (1/Ts), corresponding to a reflector’s time-depth
location in the ground. Accordingly, a 1-D reflectivity signal
is formulated as

x (l)[k] =
∑

m

cmδ[k − km], k ∈ Z, cm ∈ R, l = 1, . . . , J

(9)

where δ[k] denotes the Kronecker delta function [26],∑
m |cm| < ∞, and K = {km} is the set of discrete time

delays.
We assume that the support K is sufficiently separated.

In other words, it obeys the minimal separation condition
(see [27, Definition 2.2]), with a separation constant ν, namely

	k � min
km ,kn∈K ,m �=n

|km − kn| ≥ Fsνσ

where σ > 0 is a given kernel scaling. 	t � νσ is the
smallest time interval between two reflectors, for which we
are guaranteed to perfectly recover two distinct spikes in
a noise-free environment. In [27], we prove that under the
minimal separation condition, in a noise-free environment,
x (l)[k] is perfectly recovered by solving a constrained �1 norm
optimization problem. We also presented theoretical bounds on
the seismic reflectivity recovery error and on the localization
error, based on Earth Q model.

In a time-variant model, we take into account the attenuation
and dispersion of the reflected pulses recorded at the geo-
phones on the ground. In this case, y(l) ∈ R

Ly×1, an observed
seismic discrete trace of channel l, in the observed seismic
2-D data Y ∈ R

Ly×J , is of the form

y(l)[k] =
∑

n

x (l)[n]gσ,n[k − n] +w(l)[k], n ∈ Z (10)

where {gσ,n} is a known set of kernels (pulses) corresponding
to a possible set of time delays [27]. As stated before,
σ > 0 is a known scaling parameter, and w(l)[k] is an
additive noise signal. The shape of each pulse gσ,n depends
on the time (depth) tn it corresponds to, and the subterrain
characteristics, that can be mathematically described by the
Earth Q model [27]–[30]. A brief review of the time-variant
pulses model-based estimation can be found in Appendix D.

Alternatively, one can assume a conventional convolution
model where the wavelet is time-invariant. In other words, all
kernels are identical: gσ,n[k] = gσ [k] ∀n. Namely, in the time-
invariant case, each seismic observed trace can be described
as

y(l)[k] =
∑

n

x (l)[n]g[k − n] +w(l)[k], n ∈ Z (11)

where g[k] is a seismic wavelet of length Lg, and w(l)[k] is
an additive noise. Clearly Ly = Lx + Lg − 1. The wavelet is
assumed to be invariant in both time and space (i.e., both in
horizontal and vertical directions). We assume that the seismic
signal is free of multiple reflections [31].
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In the matrix-vector form, we can model the observed 2-D
seismic data image Y ∈ R

Ly×J in both cases as

Y = GX+W. (12)

Generally, G is an operator matrix such that Gk,n =
gσ,n[k − n]. In the time-invariant case, G is a convolution
matrix of size Ly× Lx such that Gk,n = g[k−n], and W is an
additive i.i.d. white noise matrix independent of X, with zero
mean and variance σ 2

w . We do not impose any prior knowledge
of the structure or possible patterns in the reflectivity image.

Note that practically, even in a noise-free scenario under
the separation condition, x(l) and G do not obey the bound
guaranteeing neither a unique solution for P1 nor a stable
solution for P1,ε . Namely, in most practical cases we have

�x(l)�0 >
1

2

(
1+ 1

μ(G)

)
.

The mathematical analysis takes a worst case point of view.
For this reason, the stability and success guarantees are known
to be quite pessimistic. Tighter bounds could have probably
been obtained. Yet, this bound is still widely used, perhaps
due to its simplicity.

IV. PROPOSED METHOD

As described in Section II, one way to look at the seismic
inversion problem is to simply solve a CSC problem, trace
by trace, using one of the popular methods (such as ISTA,
FISTA, LISTA, ada-LISTA, and so on [14]–[17]). Classical
pursuit methods, such as ISTA, for example, are guaranteed
to recover the true unique solution to the P0 problem [2]
providing that the number of non-zeros per stripe is less
than (1/2)(1 + (1/μ(D))). In real-life scenarios, where we
usually consider the P1,ε problem, stability of the results is
also guaranteed under the assumption that x is sparse enough.
Namely, if �x�0 < (1/2)(1+ (1/μ(D))), then the deviation of
the recovery x̂ from the true x is bounded by [2]

�x − x̂�2
2 ≤

4ε2

1− μ(D)(2�x�0 − 1)
.

Nevertheless, in many practical cases, we observe four
major issues inherent to the data.

1) The mutual coherence of the dictionary is relatively
high. For example, in the seismic scenario, usually
0.5 < μ(G) < 1 (depending on the sampling rate and
the wavelet’s scaling σ and on the Q attenuation factor).

2) The signal [or even a signal stripe (or a patch)] is not
sufficiently sparse for a successful recovery (see [12]).

3) The ratio between the global maximal and minimal x
values in absolute value (|x|max/|x|min) is high. This in
turn leads to longer convergence time and erroneous
results due to difficulty to determine the required para-
meters, especially the thresholds (biases).

4) Recovering the sparse code takes too much time and
cannot be applied to real-time applications.

Motivated by these challenges, we suggest a simple mod-
ification in the conventional approach. Besides its simplicity,
the main advantage of the proposed method is a substantial

speed up, without requiring any pre-training. Our approach
could also be potentially incorporated in conventional neural
nets forward pass.

A. Receptive Field Normalization ITA

Most thresholding algorithms are inherently limited by the
challenge of setting a (global or local) threshold that is not
inclined toward spikes of strong amplitudes, even when assum-
ing sufficient separation and imposing low mutual coherence.
In other words, when projecting the signal on the dictionary,
in order to detect the presence of a dictionary atom in the sig-
nal (or the residual), we need to choose a threshold that would
fit strong spikes as well as small spikes. A threshold that is
too small would yield a smeared solution (not sparse enough),
whereas a threshold that is too large results in missed spikes
(too sparse). To cope with this problem, ISTA [14] repeatedly
iterates over the residual term, with a constant yet relatively
small threshold, which makes convergence considerably slow.
In ISTA, the threshold (λ/c) controls the desired sparsity.
To cope with this issue, FISTA incorporates a momentum
term in the update step at each iteration [15]. On the other
hand, LISTA [16] and Ada-LISTA [17] attempt to learn more
suitable weight matrices and use adaptive thresholds.

We propose a different approach. That is, instead of mod-
ifying the threshold and/or the dictionary, or having learned
different local thresholds for each receptive field (as can be
done in CNNs), we normalize the energy of each receptive
field, before projecting it on the features space.

Definition 1 (Receptive Field Normalization Kernel): A ker-
nel h[k] can be referred to as a receptive field normalization
kernel.

1) If the kernel is positive: h[k] ≥ 0 ∀k.
2) If the kernel is symmetric: h[k] = h[−k] ∀k.
3) If the kernel’s global maximum is at its center: h[0] =

1 ≥ h[k] ∀k �= 0.
4) If the kernel’s energy is finite:

∑
k h[k] <∞.

Definition 2 (Receptive Field Normalization): Assuming a
receptive field normalization kernel h[k] of odd length Lh,
we define the local weighted energy of a time window centered
around the kth sample of a 1-D observed data signal y ∈ R

Ly×1

σy[k] �
⎛
⎜⎝

Lh−1
2∑

n=− Lh−1
2

h[n]y2[k − n]
⎞
⎟⎠

1
2

. (13)

When y[k] is modeled in accordance to (10), or any other
application where y = Dx + e, and h[k] is a receptive field
normalization window function of length Lh ≤ Ld odd number
of samples. For our application, we used a truncated Gaussian-
shaped window, but it is possible to use any other window
function depending on the application, such as a rectangular
window, Epanechnikov window, and so on. The choice of
the normalization window and its length affects the choice of
the thresholding parameters. If h[k] is a rectangular window,
then σy[k] is simply the �2 norm of a data stripe centered
around the kth location. Otherwise, if the chosen receptive
field normalization window is attenuating, then the energy is
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focused in the center of the receptive field, and possible events
at the margins are repressed. The window size is Lh ≤ Ld so
as to avoid interference of adjacent events as much as possible.
Yet, it is recommended not to use a window that is too small.
Lh ≥ (Ld/2) can serve as a good rule of thumb.

Receptive field normalization is employed by dividing each
data point by a local energy measure, before projecting the
signal on the dictionary and taking a threshold. Assuming a
signal y and a convolutional dictionary D, an initial solution
x0 = 0 and an initial estimated support 	q0 = 0 at θ = 0.
At the first iteration θ = 1, we compute the local variance of
y[k] as defined in (13), namely

σy[k] =
√

h[k] ∗ y2[k] (14)

where h[k] is a receptive field normalization window, and
∗ denotes the convolution operation. Then, we normalize
the signal by dividing each data point by the corresponding
receptive field energy. In order to avoid amplification of low-
energy regions, we use a clipped version of σy[k]. Namely

σ̃y[k] =
{

σy[k],
∣∣σy[k]

∣∣ ≥ τ1

1,
∣∣σy[k]

∣∣ < τ1
(15)

where τ1 > 0 is a predetermined threshold for the first
iteration. Empirically, for our application, 0.15 ≤ τ1 ≤ 0.4
works well. We define the signal normalization weight matrix
W0 ∈ R

Ly×Ly

W0 = diag

(
1

σ̃y[k]
)

, k = 1, . . . , Ly. (16)

Also, we define the dictionary normalization weight matrix
as

WD = diag

(
1

σdi

)
, i = 1, . . . , mLx (17)

where σdi = �di�2 is the �2 norm of the i th atom. Recall
that since the dictionary is convolutional, the i th atom, i =
(k−1)Lx+l is the kth filter shifted to the lth support location.
Clearly, when the dictionary is a time-invariant convolutional
dictionary, σd(k−1)Lx+l = σdk ∀k ∈ [1, m].

The detected support at the first iteration is

q1 = Iβ1(WDDT W0y) (18)

where I is an element-wise thresholding indicator function

Iβ1(xk) =
{

1, |xk| ≥ β1

0, |xk| < β1.
(19)

If the dictionary atoms are assumed to be normalized, such
that σdi = 1 ∀i , then of course WD is simply an identity
matrix, and one can simply ignore WD throughout the entire
formulation.

It is a well-known fact that according to Cauchy–Schwartz
inequality, the correlation coefficient defined as

ρab � aT b
�a�2�b�2

(20)

is bounded by one (in absolute value): |ρab| ≤ 1. There-
fore, if we were to divide the inner product DT y by each

receptive field’s energy and by the corresponding atom’s
energy, we could detect an atom’s sole presence and a perfect
match in a time-window of the signal y, when the result
is exactly 1. Of course, when several pulses interfere in a
single time window, when the mutual coherence is not small
enough, the threshold needs to be adjusted accordingly, and
a few iterations for corrections may be needed. Choosing an
attenuating normalization kernel can repress adjacent spikes.
Overall, accurate detection depends on the correlation between
neighboring atoms and on neighboring spikes amplitudes,
as analytically described in Theorems 1–3.

As stated below, if the support is sufficiently separated, and
the mutual coherence is sufficiently small, then the true support
is perfectly recovered at this stage, within the first iteration.
Once the support is recovered there are two simple ways to
determine the amplitudes. The first, and more accurate, is sim-
ply to solve an LS problem for the subsystem y = DK1 xK1 ,
where DK1 denotes the partial dictionary matrix having |K1|
columns from the columns of D with indices in K1—the
estimated support in the first iteration. Alternatively, if one
wishes to speed up the algorithm, or in real-life applications
where the support is not sufficiently sparse, it is possible to
approximate the amplitudes simply as x1 = q1 � (W2

DDT y),
where � denotes the Hadamard product.

In the special case of a signature dictionary (m = 1), it is
possible to approximate the support amplitudes by x[k] =
y[k + 	d]/d p

k , where k ∈ K1 is a support index, 	d �
(Ld − 1/2) is the convolution time shift, and d p

k = dk[k +
	d] denotes the corresponding atom’s central value. For a
signature dictionary of a Ricker wavelet, d p

k = �dk�∞ =
g[0] = 1, ∀k. Empirically, we have not witnessed a significant
advantage for the first accurate method over the approximate
one, in the case of the signature dictionary. For the sake of
brevity, in this section, we assume without loss of general-
ity that the dictionary atoms central value is one, that is,
d p

k = 1, ∀k.
If the support is sufficiently separated, the algorithm is done

at this stage, within one iteration. Otherwise, we can proceed
to perform iterative stages as follows. At each iteration,
we find the required change in the support by projecting
the dictionary on the normalized residual. The residual at
iteration θ is

	rθ+1 = y − Dxθ . (21)

We now compute the local weighted variance of the residual
term

σ θ+1
	r [k] =

√
h[k] ∗	r2

θ+1[k] (22)

and its clipped version

σ̃ θ+1
	r [k] =

{
σ θ+1

	r [k],
∣∣σ θ+1

	r [k]
∣∣ ≥ τθ

1,
∣∣σ θ+1

	r [k]
∣∣ < τθ .

(23)

Once again, we build the corresponding normalization
weight matrix

Wθ = diag

(
1

σ̃ θ+1
	r [k]

)
, k = 1, . . . , Ly. (24)
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Then, we project the dictionary on the normalized residual
and threshold the obtained signal

	qθ+1 = Iβθ+1

(
WDDT Wθ	rθ+1

)
= Iβθ+1

(
WDDT Wθ (y − Dxθ )

)
. (25)

The updated solution at iteration θ + 1 is

xθ+1 = 	qθ+1 �
(
W2

DDT 	rθ+1
)+ xθ (26)

where � denotes the Hadamard product. Note that the
algorithm should converge in a few iterations. About 2–5
iterations should be enough. To ensure stable convergence,
incorporating a momentum is also possible

xθ+1 = αr
(
	qθ+1 �

(
W2

DDT 	rθ+1
))+ xθ (27)

where 0 < αr ≤ 1 is a constant step size. In practical cases,
when the data is not sufficiently separated and the mutual
coherence is relatively high, an exact stopping rule may be
hard to determine and solutions may be unstable. In these
cases, early stopping after a predetermined small number of
iterations is recommended. Note that as opposed to ISTA, here
the shrinkage operator is applied only to the projection on the
residual, without formerly adding it to the previous solution.
As previously stated, in the case of a signature dictionary, it is
possible to use

xθ+1 = αr(	qθ+1 �	rθ+1)+ xθ (28)

instead of (27).
From a neural network perspective, receptive-field normal-

ization (RFN) increases the sensitivity of a neuron to its
receptive field. In some cases, where the energy of recep-
tive fields in different locations is unbalanced, some atoms
may be strongly expressed, whereas others are significantly
weaker. RFN overcomes this obstacle, without having to set
local or adaptive thresholds. This way, the activation of a
neuron is independent of the scaling of other events in the
signal. In other words, the neuron is able to detect a feature
(reflection), even if its energy is relatively low, comparing to
other events in the data.

Note that τθ essentially determines the minimal |x|min that
can be detected at each of the above steps. It should be deter-
mined taking into account the noise expected level. Namely,
since we usually assume the nuisance noise is uncorrelated
with the signal, therefore

E�y�2
2 = E�Dx�2

2 + E�e�2
2

where E denotes mathematical expectation. In order to avoid
noise amplification, we would set τθ such that

τθ ≥ |x|min min
i
�di�2 + εd (29)

where εd denotes the noise �2 norm over a data stripe of
length Lh.

We project the dictionary on the normalized signal though
it is possible to normalize the projection DT (y−Dxθ ) instead.
Yet, the two options are not equivalent. Normalization of the
signal prior to projection as in (24) rescales each sample and
therefore might cause some distortion to the signal. It is more
suitable for admissible kernels (see [27, Definition 2.1]), where

Algorithm 1 Receptive Field Normalization ITA
input : signal y, dictionary D
Init: x0 = 0, 	q0 = 0, θ = 0
compute: WD = diag

(
σ−1

di

)
, i = 1, . . . , mLx.

while �xθ+1 − xθ�2 < δ or θ ≤ Nit do
	rθ+1 = y − Dxθ

compute:

σ̃ θ+1
	r [k] =

{
σ θ+1

	r [k],
∣∣σ θ+1

	r [k]
∣∣ ≥ τθ

1,
∣∣σ θ+1

	r [k]
∣∣ < τθ

Wθ = diag
(
σ̃ θ+1

	r [k]
)−1

, k = 1, . . . , Ly

	qθ+1 = Iβθ+1(WDDT Wθ	rθ+1)
solve the subsystem 	rθ+1 = DKθ+1	xθ+1,
DKθ+1 - partial dictionary matrix corresponding to the
support 	qθ+1.
xθ+1 = αr	xθ+1 + xθ

θ ← θ + 1
end

Algorithm 2 Approximate Receptive Field Normalization
ITA

input : signal y, dictionary D
Init: x0 = 0, 	q0 = 0, θ = 0
compute: WD = diag

(
σ−1

di

)
, i = 1, . . . , mLx.

while �xθ+1 − xθ�2 < δ or θ ≤ Nit do
	rθ+1 = y − Dxθ

compute:

σ̃ θ+1
	r [k] =

{
σ θ+1

	r [k],
∣∣σ θ+1

	r [k]
∣∣ ≥ τθ

1,
∣∣σ θ+1

	r [k]
∣∣ < τθ

Wθ = diag
(
σ̃ θ+1

	r [k]
)−1

, k = 1, . . . , Ly

	qθ+1 = Iβθ+1(WDDT Wθ	rθ+1)
xθ+1 = αr

(
	qθ+1 �

(
W2

DDT 	rθ+1
))+ xθ

θ ← θ + 1
end

most of the kernel’s energy is focused at its center. On the
other hand, it promotes muting of close spikes and decreases
noise influence especially when dealing with relatively small
environments.

A summary of the proposed methods is presented in
Algorithms 1–3.

Algorithm 4 shows a further simplification of the proposed
method. Namely, after computing the locally normalized signal
ỹ � W0y at the first iteration, we propagate through the
iterations without computing the spikes amplitude and without
normalizing again, in order to estimate only the support. When
the support is fully revealed, we calculate the weights by
solving an LS problem or an approximation as described
above. This variation can be used if more speed is necessary,
on the expense of accuracy, or for implementing a learned
version as discussed in Section VII.

B. Theoretical Analysis for the RFN-Thresholding With
a Convolutional Sparse Model

Consider a stripe of length Lh around some index i and the
corresponding atoms shifts around this location in the signal.
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Algorithm 3 Approximate Receptive Field Normalization
ITA for a Signature Dictionary
input : signal y, dictionary D
Init: x0 = 0, 	q0 = 0, θ = 0
compute: WD = diag

(
σ−1

di

)
, i = 1, . . . , mLx.

while �xθ+1 − xθ�2 < δ or θ ≤ Nit do
	rθ+1 = y − Dxθ

compute:

σ̃ θ+1
	r [k] =

{
σ θ+1

	r [k],
∣∣σ θ+1

	r [k]
∣∣ ≥ τθ

1,
∣∣σ θ+1

	r [k]
∣∣ < τθ

Wθ = diag
(
σ̃ θ+1

	r [k]
)−1

, k = 1, . . . , Ly

	qθ+1 = Iβθ+1(WDDT Wθ	rθ+1)
xθ+1 = αr(	qθ+1 �	rθ+1)+ xθ

θ ← θ + 1
end

Algorithm 4 Support Detection Approximate Receptive
Field Normalization ITA for a Signature Dictionary
input : signal y, dictionary D
Init: x0 = 0, 	q0 = 0, q0 = 0, θ = 0
compute:

σ̃y[k] =
{

σy[k], |σy[k]| ≥ τ1

1, |σy[k]| < τ1

WD = diag
(
σ−1

di

)
, i = 1, . . . , mLx.

W0 = diag
(
σ̃−1

y [k]
)
, k = 1, . . . , Ly,

ỹ =W0y
while �	ỹθ+1 −	ỹθ�2 < δ or θ ≤ Nit do

	ỹθ+1 = ỹ − Dqθ

	qθ+1 = Iβθ+1(WDDT 	ỹθ+1)
qθ+1 = αr	qθ+1 + qθ

θ ← θ + 1
end
x̂ = q̂� y

Hereafter, the i th entry of a vector v is denoted by v[i ], and a
stripe cropped around the i th index is denoted by vi . Note that
due to the convolution properties of the dictionary, a data stripe
yi ∈ R

Lh×1 is affected from input spikes in xi ∈ R
mLs×1, such

that Ls = Lh + Ld − 1. To shed some light on the theoretical
aspects of the proposed method, let us define the local sparsity
of a stripe of x as the maximum number of non-zeros weights
corresponding to a data stripe of length Lh at location i

s = �x�Si
h

0,∞ = max
i
�xi�0 = max

i

∑
l∈Si

h

I0(x[l]) (30)

where Si
h denotes a neighborhood of mLs point values corre-

sponding to Lh data points symmetrically distributed around
index i and redefining I0(0) = 0. Let us rephrase (13) in the
matrix-vector form

σy[i ] = �Hyi�2 (31)

where yi denotes a stripe of length Lh around some index i ∈
[1, Ly], that is, yi = [y[i−(Lh−1/2)], . . . , y[i+(Lh−1/2)]]T

and H = diag(h(1/2)) (ignoring boundary issues). Throughout
the proofs, we assume σy[i ] > τ ∀i ∈ [1, Ly].

Theorem 1 (Support Recovery Using RFN in the Presence
of Noise): Let y = Dx+ e, where D is a convolutional dictio-
nary, with normalized atom’s variance �di�2 = σd = 1 ∀i ∈
[1, mLx]. Assume a rectangular receptive field normalization
kernel, that is, h[k] = 1, h ∈ R

Lh×1, such that Lh = Ld.
In other words, H simply extracts a local data stripe.

1) Assuming that

|xi |min

|xi |max + εd
s

>
sμ

1+ μ

(
1+

√
s√

1− (s − 1)μ− ε̃d,∞

)

+ 2sεs

1+ μ
∀i ∈ K (32)

where |xi |max and |xi |min are the highest and the lowest
entries in a stripe xi , respectively, εd � �ei�2, ε̃d,∞ �
(εd/|x|min) and εs � (εd/τ).

2) The threshold β1 is chosen according to

(1+ μ)|xi |min

s|xi |max+εd
−μ− εs > β1

>

√
sμ√

1− (s − 1)μ−ε̃d,∞
+εs.

(33)

Then, the support of x is perfectly recovered with RFN
thresholding

Supp(x1) = Supp(x)

where Supp(·) is the support of a vector, and x1 is the
recovered sparse vector within one step of RFN thresholding
(or one iteration of Algorithms 1–4).

Proof: See Appendix A.
Consequently, in the noise-free model y = Dx, the true

support is perfectly recovered within one iteration of
Algorithms 1–4 provided as follows.

1)

|xi |min

|xi |max
>

sμ

1+ μ

(
1+

√
s√

1− (s − 1)μ

)
∀i ∈ K

(34)

where |xi |max and |xi |min are the highest and the lowest
entries in a stripe xi , respectively.

2) The global threshold β1 is chosen according to

1+ μ

s

(
min
i∈K

|xi |min

|xi |max

)
− μ > β1 >

√
sμ√

1− (s − 1)μ
.

(35)

The conditions (32) and (34) may appear too strict at the
first glance, but note that we are considering the local ratio
(|xi |min/|xi |max) rather than the global ratio (|x|min/|x|max).
Also the bound is far from being tight since in practice

|aT
i d j | � μ

σy[i ] ∀{(i, j) : i �= j, i ∈ K , j /∈ K }

and

|aT
i e| � εs ∀i
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where we denote ai = W0di . Good support recovery can be
achieved in practical cases with sufficient separation for much
higher values of μ, s, and (|xi |min/|xi |max), as demonstrated
in Section V.

Stable recovery of hard thresholding in the noiseless case
is acquired as long as [2]

min
i∈K
|dT

i y| > max
j /∈K
|dT

j y|. (36)

Leading to

|x|min − (s − 1)μ|x|max > β1 > sμ|x|max. (37)

In other words,

|x|min

|x|max
> (2s − 1)μ. (38)

Suppose s = 1, meaning that there can only be one atom
in each stripe, than we have

|x|min

|x|max
> μ. (39)

Practically, in many convolutional models, if the stride is
not large enough, this condition is not met, leading us to the
following theorem.

Theorem 2 (Support Recovery Using RFN Under Sufficient
Separation): Perfect recovery in the noiseless case where
s = 1 with RFN is guaranteed for any ratio

0 <
|x|min

|x|max
≤ 1.

Proof: See Appendix B.
It is important to emphasize that in most practical cases,

even if the above assumptions do not hold, it does not mean
the support detection will fail. It solely means that we cannot
guarantee, by means of the following proofs, perfect support
detection at the first iteration.

Denote Di ∈ R
Lh×mLs as the submatrix partial dictionary

yielding point y[i ], that is obtained by restricting the dictionary
D to the support of mLs samples equally distributed around
point i .

Theorem 3 (Support Recovery With Attenuating RFN Ker-
nel in the Noiseless Case): Let y = Dx, where D is a
convolutional dictionary, with normalized atom’s variance
�di� = σd = 1 ∀i . Assume a symmetric strictly decreasing
receptive field normalization kernel, that is, h[|k|] > h[|k+1|]
(e.g., a truncated Gaussian window), of length Lh = Ld, such
that μ(HDi)� μ(D), ∀i ∈ [1, Ly].

1) Assuming that K obeys the minimal separation condi-
tion with a separation constant ν.

2)
√

sμ

hd,min
< β1 < 1− (hd(ν)+ μ)

× �x−i�1

|x[i ]| + hd(ν)�x−i�1
∀i ∈ K (40)

where hd(ν) � maxp∈[1,m]Hd[	k+(p−1)Ls,	k+(p−1)Ls],
such that Hd is a diagonal matrix holding the attenuated atoms
�2 norms at the support around some point data at index i .
Namely, Hd[k, k] = �Hdi

k�2, k ∈ Sh
i , where di

k ∈ R
Lh×1

denotes the kth atom of the submatrix Di . In other words,
hd(ν) is the maximal �2 norm of an atom’s shift at the minimal
separation distance multiplied by the RFN window. Recall that
we defined 	k as the minimal number of samples between
adjacent events. On the other hand, hd,min � mink Hd [k, k]
is the lowest �2 norm of a shifted atom multiplied by the
RFN window centered around some point i , and �x−i�1 �∑

t∈Si
h ,t �=i |x[t]| = �xi�1−|x[i ]| is the sum of weights affecting

the i th stripe, besides the spike at location i . Then, the support
of x is perfectly recovered with RFN thresholding

Supp(x1) = Supp(x)

where Supp(·) is the support of a vector, and x1

is the recovered sparse vector within one iteration of
Algorithms 1–4.

Proof: See Appendix C.
The suggested approach and the above theorems shed light

on the role of spatial stride and maxpooling in CNNs [24].
When using a spatial stride, we convolve an input signal
is a certain layer, while skipping a fixed number of spatial
locations, primarily in an attempt to reduce the computational
burden. Consequently, the mutual coherence of the stride con-
volutional dictionary is smaller, guaranteeing more accuracy
and less redundancy at the activation stage. Alternatively, when
the atom’s shifts are small, usually due to a high sampling
rate, the mutual coherence of the convolutional dictionary is
relatively high. Naturally, the projection of a shifted atom on
the signal may yield strong values in a small area around
its true location in the signal. In this case, thresholding can
lead to a group of spikes around each true spike. In their
work, Gregor and Lecun [16] refer to these issues as “mutual
inhibition and explaining away.” One possible way to address
this issue in CNNs is by maxpooling, namely by taking
into account only the maximal or average value in a small
local samples neighborhood. In the above method, we propose
another possible way to address this issue. That is, one can
suppress the strong expressiveness of one component over the
other by using an attenuating normalization window, such as
a Gaussian window (as opposed to an averaging window) and
by fine-tuning of the applied thresholds.

The proposed method is closely related to local response
normalization (LRN) [32]. LRN normalizes each neuron’s
response with respect to the sum of the squared responses of
adjacent kernel maps at the same spatial position. The idea,
inspired by natural processes in biological neurons, is that
strong neuron responses will inhibit weaker neurons responses.
In terms of neural nets training, LRN reduces feature maps
similarity and encourages competitiveness, which in turn can
improve generalization. Practically, the main difference is that
we propose to locally normalize the input signal, with respect
to spatially close inputs, before applying a filter, in an attempt
to scale all responses to the same range and to prevent stronger
spikes from “casting” a shadow over weaker spikes, both
locally and globally, that is, across all of the signal.

V. EXPERIMENTAL RESULTS

In Sections V-A and V-B, we provide synthetic and real
data examples demonstrating the performance of the proposed
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TABLE I

SYNTHETIC EXAMPLE—RESULTS AND PARAMETERS: WAVELET’S SCALING ω0, MINIMAL SEPARATION CONSTANT ν , THRESHOLDS β1 AND β2 ,
NORMALIZATION WINDOW SIZE Lh , NORMALIZATION WINDOW STD σh , RECOVERED REFLECTIVITY SCORE AT THE FIRST ITERATION ρ1

X,X̂
,

FINAL RECOVERED REFLECTIVITY SCORE ρX,X̂ , AND AVERAGE NUMBER OF ITERATIONS Mit

technique. Hereafter, we refer to the proposed method as
RFN-ITA.

A. Synthetic Data

In order to verify the robustness of the proposed method,
we conducted extensive experiments in different scenarios.

First, we generated J = 1000 random reflectivity indepen-
dent sequences of length Lx = 60. Each reflectivity column is
modeled as a zero-mean Bernoulli–Gaussian process [33], that
is, reflectors times (depths) are independently distributed with
Bernoulli probability p, and reflectors amplitudes are normally
distributed with mean μ and variance σ 2. Mathematically, each
reflectivity sequence x (l)[k] is described as

x (l)[k] = r (l)[k]q(l)[k], j = 1, . . . , J

where r (l)[k] ∼ N (μ, σ 2
r ) and q(l)[k] ∼ B(p). Clearly,

p determines the degree of sparsity. In the following experi-
ments, σr = 3, and 0.1 ≤ p ≤ 0.4, depending on the chosen
minimal separation 	k—the minimal separation between two
spikes. Here, 	k does not necessarily obey the minimal
separation condition.

We assume a source waveform g(t) defined as the
real-valued Ricker wavelet

g(t) =
(

1− 1

2
ω2

0 t2

)
exp

(
−1

4
ω2

0t2

)
(41)

where ω0 is the dominant radial frequency [28], determining
the width of the pulse. The seismic traces are calculated
according to (11), in a time-invariant noise-free environment,
with sampling interval Ts = 4 ms. Since in this case, G is
a signature dictionary, we implemented Algorithm 3 using a
truncated zero-mean Gaussian window of length Lh, with vari-
ance σ 2

h . The thresholds β1 and β2 are explicitly determined,
and for the rest of the iterations, we set βl = 0.5βl−1, where
l is the iteration number. The algorithms is stopped when
�xl−xl−1�2 < 10−4. We allow up to four iterations (Nit = 4).
The step size αr = 0.5 is constant for all experiments.

As a figure of merit, we use the correlation coefficient
between the true reflectivity and the recovered reflectivity

ρX,X̂ =
XT

csX̂cs

�Xcs�2�X̂cs�2

where Xcs and X̂cs are column-stack vectors of the true reflec-
tivity image and the recovered reflectivity image, respectively.
Table I presents the estimated reflectivities score at the first

Fig. 1. Synthetic data receptive field normalization example: the seismic
trace is depicted in the blue line and the seismic trace after applying RFN,
with an averaging window of size Lh = 15.

iteration and at the final iteration, and the average number
of iterations per trace with respect to the wavelets width,
the minimal separation distances and the algorithm parameters
β1, β2, Lh, and σh . Usually β1 is close to 1, depending on
the minimal separation. Notice that in these experiments,
the mutual coherence is relatively high: μ(G) = 0.764, 0.585
for ω0 = 50π, 80π , respectively.

Fig. 1 presents a simple example of a trace after partial
RFN ỹ =W0y, with ω0 = 80π , and 	k = 5 samples. In this
example, the pulses are intentionally completely separated.
As can be clearly seen, when the pulses are sufficiently
separated, the normalized signal is perfectly balanced regard-
less of the original local energy. Also, the pulses shape is
preserved. Therefore, beyond the theoretical analysis, it can
be intuitively comprehended why given sufficient separation,
all spikes locations can be detected by simply projecting the
dictionary on the normalized signal and applying a threshold,
without considering the ratio between the minimal and the
maximal coefficients in the absolute value in x(l). Hence, all
iterations beyond the first one are required only when reflectors
are insufficiently separated with respect to the wavelet’s length
and the mutual coherence.

Fig. 2(a) presents an example of a reflectivity channel of
length Lx = 110 samples (Ts = 4 ms), with p = 0.4,
σr = 3, and a minimal separation distance of 	k = 3 samples.
The corresponding seismic trace with ω0 = 80π is depicted
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Fig. 2. One-dimensional synthetic test. (a) True reflectivity. (b) Synthetic
trace with 40 Hz Ricker wavelet. (c) Recovered 1-D channel reflectivity
signal, first iteration ρ1

X,X̂
= 0.91. (d) Recovered 1-D channel of reflectivity

signal ρX,X̂ = 0.98.

in Fig. 2(b), and the corresponding estimated reflectivity with
β1 = 0.95, βl = 0.9, 2 ≤ l ≤ 4 and step size αr = 1 is
presented in Fig. 2(d). The estimated reflectivity in the first
iteration is presented in Fig. 2(c).

Fig. 3 shows how well one can estimate the reflectivity
depending on the dominant frequency of the Ricker wavelet
ω0 = 2π f0 ranging from 25 to 50 Hz. Here, we used a
reflectivity of J = 1200 channels of length Lx = 60 samples
(Ts = 4 ms), with p = 0.4, σr = 3, and a minimal separation
distance of 	k = 5 samples. The seismic data was further
destructed by additive noise with SNR = 40 dB. Here, we used
a Gaussian RFN window of length Lh = 11 and σh = 2.
We allow up to four iterations where β1 = 1.22 − 0.01( f0 −
25), β2 = β1 + 0.2, βl = 0.5βl−1, l = 3, 4, and αr = 0.5.
In Fig. 3(a) the blue line corresponds to the log of the mean
square error log(E�x−x̂�2

2) as a function of log(ω0). The black
dashed line corresponds to f (ω0) = c1 − 3.5 log(ω0), where
c1 = 8F2

s (Lx)
1/2 E�e�2

2/βg is a constant, βg is a parameter
that characterizes the concavity of the wavelet as defined in
[27, Definition 2.1]. As can be observed, the mean square
error E�x − x̂�2

2 decreases by a rate of ω3.5
0 . In [34, Th. 1],

we prove that under the separation condition, the mean square
error is inversely proportional to ω2

0. Hence, the estimation

Fig. 3. Reflectivity estimation as a function of the dominant frequency of the
Ricker wavelet, SNR = 40 dB. (a) The blue line corresponds to the log of the
mean square error log(E�x− x̂�22) as a function of log(ω0). The black-dashed
line corresponds to f (ω0) = c1 − 3.5 log(ω0), where c1 = 8F2

s (Lx)
1/2σn/βg

is a constant. (b) The correlation coefficient ρX,X̂ as a function of the wavelet
dominant frequency f0 (Hz).

error produced by the proposed algorithm decreases faster
than expected, with respect to the wavelet’s frequency, even
when the separation condition is not satisfied. Fig. 3(b) depicts
the correlation coefficient ρX,X̂ as a function of the wavelet
dominant frequency f0 (Hz).

VI. REAL DATA

We applied the proposed method, to real seismic data from a
small land 3-D survey (courtesy of GeoEnergy Inc., TX, USA).
A small 2-D seismic image that consists of 400 traces is used
for demonstration. Each trace is 1.2 s in duration (300 time
samples), with 4 ms sampling rate. The seismic image is
shown in Fig. 4(a). As can be observed, the data is non-
stationary, reflectors are closely spaced and not sufficiently
separated, and the reflector’s amplitudes are unbalanced.
Assuming an initial Ricker wavelet with ω0 = 80π (40 Hz),
we estimated Q = 200 as described in [36] and derived the set
of time-variant pulses {gσ,n} (see [27], Appendix D). The esti-
mated reflectivity image and the corresponding reconstructed
seismic image using RFN-ITA, at the first iteration and at
the second (and final) iteration are depicted in Figs. 4 and 5,
respectively. For the first iteration, we set β1 = 1 and τ1 = 0.4.
For the second iteration, we set β2 = 0.7, τ2 = 1, and
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Fig. 4. Real data inversion results. (a) Seismic data. (b) Estimated reflectivity with Nit = 2 maximum number of iterations per trace. (c) Reconstructed
seismic data, ρY,Ŷ = 0.89.

Fig. 5. Real data inversion results. (a) Estimated reflectivity in the first iteration. (b) Reconstructed seismic data in the first iteration, ρ1
Y,Ŷ
= 0.77.

Fig. 6. Real data inversion results using ISTA. (a) Estimated reflectivity with Mit = 1087 average number of iterations per trace. (b) Reconstructed seismic
data, ρY,Ŷ = 0.91.

αr = 0.3. The normalization window is a Gaussian window
of length Lh = 9 with σh = 2.

Since the ground truth is unknown, in order to quantify
the estimation success, we calculate the reconstructed seismic
image from the recovered reflectivity, that is, Ŷ = GX̂,

depicted in Fig. 4(c). We assess its correspondence with the
given data by the correlation coefficient

ρY,Ŷ =
YT

csŶcs

�Ycs�2�Ŷcs�2
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Fig. 7. Real data inversion results using multichannel time-variant deconvolution [34] with three channels taken into account for each channel estimation,
employing LSE discontinuity measure [35]. (a) Estimated reflectivity. (b) Reconstructed seismic data, ρY,Ŷ = 0.92.

Fig. 8. Zoom into the predicted reflectivities in Figs. 4–7. (a) RFN-ITA. (b) ISTA. (c) Multichannel time-variant deconvolution.

where Ycs and Ŷcs are column-stack vectors of the observed
seismic image and the reconstructed seismic image, respec-
tively. In terms of the correlation coefficient between the
predicted data to the observed data, the first iteration achieved
ρ1

Y,Ŷ
= 0.77, while the second iteration achieved ρY,Ŷ =

0.89. Increasing the number of iterations and/or decreasing
βl or τl can increase the correlation score, on the expense of
the reflector’s localization resolution, that is, these parameter
settings can produce smeared results of decreased sparsity,
which is usually unwanted. As can be seen, reflector curves,
in the reflectivity estimated in the first iteration, are a bit thick
due to high mutual coherence values and insufficient spikes
separation. Also, some reflectors are missing. Yet, this image
is very close to the final one. Using our method, the most
relevant information is recovered in the first iteration.

Figs. 6–8 compare the proposed method’s results to ISTA
results with β = 0.14 and a score of ρY,Ŷ = 0.91, and to
the multichannel time-variant method in [34] with a score of
ρY,Ŷ = 0.92. As can be seen, a slightly better score does not
necessarily indicate a visually enhanced reflectivity. As can
be observed in the predicted reflectivity produced by ISTA,
some layers are incomplete, and it appears that some spikes are

Fig. 9. Real data results of an 1-D example: seismic trace; ISTA estimated
reflectivity and RFN-ITA estimated reflectivity.

annihilated. Here, ISTA required an average of 1087 iterations
per trace. In this example, RFN-ITA reduces the number of
required iterations by a factor of 500. Fig. 9 presents one
seismic trace at in-line offset 7.5 km, and the corresponding
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TABLE II

SYNTHETIC EXAMPLE—RESULTS AND PARAMETERS: WAVELET’S SCALING ω0, MINIMAL SEPARATION CONSTANT ν , THRESHOLDS β1 AND β2 ,
NORMALIZATION WINDOW SIZE Lh , NORMALIZATION WINDOW STD σh , RECOVERED SUPPORT SCORE ρS

X,X̂
, FINAL RECOVERED REFLECTIVITY

SCORE ρ A
X,X̂

FOR LEARNED ALGORITHM 4 IMPLEMENTATION, FINAL RECOVERED REFLECTIVITY SCORE ρB
X,X̂

FOR LEARNED

ALGORITHM 3 IMPLEMENTATION, AND FINAL RECOVERED REFLECTIVITY SCORE FOR LEARNED ALGORITHM 3
IMPLEMENTATION ρC

X,X̂
WITH D1 = D2

Fig. 10. Learned RFN-ITA parameters. (a) D1 kernel. (b) D2 kernel. (c) 80π ricker wavelet (Fs = 250 Hz).

Fig. 11. Learned RFN-ITA parameters. (a) D1 kernel. (b) D2 kernel. (c) 80π ricker wavelet (Fs = 250 Hz).

estimated 1-D reflectivity by ISTA and by RFN-ITA. As can
be visually observed, the data is of inherent ambiguity, and
the estimated results differ mostly in amplitude and share
relatively close supports.

Throughout our experiments with ISTA, we observed that
decreasing β = (c/λ), which decreases the sparsity of the
solution, comes at the expense of significantly increasing the
number of iterations. Also, as can be seen in the presented
examples, ISTA performance is terms of the visual quality of
the image deteriorates with a time-variant dictionary, taking a
Q factor into account. Moreover, in practice, ISTA number of
iterations increases dramatically with the length of the signal.
Another drawback is that the constant c/λ depends on the
maximum eigenvalue of DT D that is harder to compute at
larger scales [15]. RFN does not suffer from this complication
because an approximate solution is reached within a limited
number of iterations, where each data stripe is analyzed
locally, yet the signal is updated globally without significant
increase in computational complexity.

It is important to emphasize that most real data super resolu-
tion problems, and specifically seismic inversion, do not com-
ply with the theoretical bound constraints (e.g., [2], [12]) for
separation, amplitude balance, and noise. Therefore, applying
classical algorithms to real data applications is not expected
to result in perfect recovery. In [27] and [34], we show that
under the separation condition in a noise-free environment,
we can perfectly recover the reflectivity in an attenuating
environment, providing that we can estimate Q. However,
when working with real data, there is no guarantee that the
true reflectors are sufficiently separated nor that Q is constant
or estimated correctly. Also, we observe that the resolution
of the estimation results is highly sensitive to user-dependent
parameters. Overall, real data is of inherent uncertainty.

Since the proposed method requires only 2–4 iterations per
trace, its implementation entails significantly low computa-
tional complexity. Solving using MATLAB, the processing
time of the above dataset of 300 × 401 on a standard CPU
Intel(R)Core(TM)i7-7820HQ@2.90 GHz is 122 ms, that is,

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 28,2021 at 11:51:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PEREG et al.: CSC FAST APPROXIMATION 15

Fig. 12. Learned RFN-ITA parameters: D1 = D2 compared to original 50π
ricker wavelet (Fs = 250 Hz).

about 305 μs per trace. Whereas the processing time of the
same dataset for ISTA is 13.13 s, that is, 32.8 ms per trace.
For the 3-D time-variant multichannel method, the processing
time is 16.06 min, and 2.41 s per trace, which means that the
proposed method is about 100 times faster than ISTA. This
in turn assures us of a promising potential of the suggested
method to be incorporated in the future in large-scale real-time
data processing applications.

VII. LEARNED RFN-ITA

At this stage, a learned version of the proposed method,
inspired by LISTA, seems almost inevitable. Namely, let us
unfold � iterations of RFN-ITA, and set the filters building
each convolutional dictionary at each iteration Dθ as trainable
parameters. In other words, we design a neural net, such that
the output at layer θ is

	rθ+1= y − Dθ xθ

	qθ+1=Sβθ+1

(
DT

θ+1W̃θ	rθ+1
)

xθ+1= αθ+1
(
	qθ+1 �	rθ+1

)+ xθ , θ = 0, 1, . . . ,�− 1

(42)

where W̃θ is a scaled RFN matrix as defined in (24), without
dividing by �di�2, since at the training stage the dictionary is
unknown. In other words,

W̃θ = diag

(
1

σ̃ θ+1
	r [k]

)
, k = 1, . . . , Ly. (43)

� = {αθ, βθ , Dθ } are the learned parameters. Here, we have
used the soft-thresholding operation because its implementa-
tion using the ReLU function facilitates convergence. Training
is performed using stochastic gradient descent to minimize the
loss L(y;�) between the model predicted code x� = f (y;�)
to a known code over a training set of known {y}Pp=1 and the
corresponding {x}Pp=1

min
�

1

P

P∑
p=1

� f (yp;�)− xp�2
2. (44)

Once trained, the model is expected to produce sparse codes
for signals from the same probability distribution, without
requiring their original true dictionary.

Fig. 10 compares the learned filters to the true wavelet
g[k] that was used to create the observed traces, for a two-
layer model, that is, � = 2, trained to recover only the

support, as described in Algorithm 4. In this section, we used
Pytorch [37] for the numerical implementation. A training set
of N = 997 random reflectivity independent sequences of
length Lx = 60, as described in Section V-A, with ν = 3,
ω0 = 80π , and Fs = 250 Hz. Table II presents the testing
correlation score for this example ρ A

X,X̂
, the support correlation

score ρS
X,X̂

, and the learned parameters β1, β2 for a test set of

N = 997 traces, with different minimal separation constants
ν = 5, 3, 1. We do not force any constraints on the weight
parameters.

Fig. 11 shows the learned filters versus the true wavelet,
for a two layer model, that is, � = 2, trained to recover
both the support and amplitude with ν = 1, as described in
Algorithm 3. Fig. 12 presents the learned filter for Algorithm 3
when ν = 1, ω0 = 50π , and we force D1 = D2. As can
be seen, the learned pulse is significantly narrower than the
original one, and its side-lobes are shallower. The corre-
sponding correlation scores ρB

X,X̂
and ρC

X,X̂
, respectively, are

also presented in Table II. As evident, there is no significant
variations between the models’ performance, since the predic-
tion precision is inherently dependent on sufficient separation
between spikes, and the signal bandwidth, represented by ν
and ω0.

At this stage, we shall leave further work on the learned
extension of RFN-ITA, the relevant mathematical analysis, and
its applications to our future research.

VIII. CONCLUSION

We have presented an efficient modification of the classic
ITAs for CSC. We have shown that receptive field normal-
ization leads to a substantial reduction in the number of
required iterations to reach an approximate sparse code vector.
We demonstrated that whether the dictionary is known or
learned via neural network training, about 2–4 iterations are
sufficient to produce a sparse code close to the true one, even
when the dictionary’s mutual coherence is relatively high. The
proposed algorithms entail a significantly low computational
complexity, and therefore can potentially contribute to a dra-
matic speed-up in many real-time applications, such as super
resolution and pattern recognition systems, as well as neural
nets feature extraction in other existing systems. Hopefully,
future work will further investigate the proposed methods and
their extension to other applications. An extension to seismic
blind deconvolution is also possible. The theoretical analysis
could be extended to a statistical point of view rather than a
worst-case scenario approach.

APPENDIX A
PROOF OF THEOREM 1

We introduce the following assumptions.
1) A 1 (Stationary Receptive-Field Energy): We assume that

for every support index i , the local weighted energy as defined
in (13) is approximately constant and equal to the energy at i ,
that is,

σy[k] = σy[i ] ∀k ∈ Ki , i ∈ K (45)
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where Ki is the neighborhood of i and k belongs to the
neighborhood Ki provided that |k − i | ≤ (Ld/2)− 1. Assume
without loss of generality the dictionary columns are nor-
malized, and denote ai = W0di . According to the above
assumption, we have∣∣aT

i di

∣∣ = 1

σy[i ] ∀i ∈ K . (46)

In other words, the corresponding atom after RFN is approx-
imately equivalent to a scaled version of the original atom.
Denote vi such that ai = diag−1(σy[i ])� (di − vi), then (46)
is true when either vT

i di = 0 or vi = 0. Clearly, assumption
A 1 is not completely accurate, since for each data sample,
the normalization window changes its location, and therefore
the local energy changes. However, practically we observe
that the difference �σy[i ]ai −di�2 is relatively very small and
that vT

i di can be neglected for the purposes of the following
mathematical analysis and for the sake of brevity.

2) A 2 (No Atoms Mismatch):∣∣aT
i d j

∣∣ ≤ 1

σy[i ]
∣∣dT

i d j

∣∣
≤ μ

σy[i ] ∀{(i, j) : i �= j, i ∈ K , j /∈ K }. (47)

In other words, RFN can only decrease local stripe corre-
lation to dictionary atoms that are not on the support. This
assumption is very accurate, even in practical cases.

3) A 3 (Noise Scaling):

∣∣aT
i e
∣∣ ≤ ∣∣W0dT

i e
∣∣ ≤ ∥∥dT

i

∥∥
2�ei�2

mini σy[i ] ≤
εd

τ
= εs ∀i (48)

where ei is a noise stripe of length Lh such that �ei�2 = εd,
based on Cauchy–Schwartz and assuming atoms with unit
norm dT

i e ≤ �dT
i �2�ei�2 = �ei�2. In other words, the cor-

relation of a local stripe noise to the dictionary atoms after
RFN remains well bounded. Note that εd � ε.

Let us denote W0,K ∈ R
Lx×Lx as the partial signal nor-

malization weight submatrix on the support of x. In other
words, W0,K = diag(σ̃−1

y [k]), k = 	d+1, . . . ,	d + Lx. One
may suggest that the above assumptions simply propose that
thresholding the expression DT W0y is equivalent to threshold-
ing W0,K DT y. In other words, scaling the projection values
is equivalent (or advantageous) to normalizing the (error)
signal and then projecting it on the dictionary. In practice,
the two approaches are mathematically equivalent only when
the atoms are at least Ls samples apart. Indeed, projection
post-normalization can distort the observed signal. However,
it is beneficial for preventing false detections. For example,
in Section V, we presented examples using the Ricker wavelet.
RFN helps prevent the “side wings” from being misdetected
as the main lobes of the wavelet. This is achieved by the
neighborhood energy reducing the normalized side lobe’s
correlation to atoms at these locations, implying that it cannot
be a true support location.

These three assumptions are not necessarily realistic in
the case of the seismic inversion. However, many assump-
tions made for seismic deconvolution in the field of seismic
processing are not necessarily realistic either, and yet seismic

deconvolution has been applied for many years with consid-
erable success [38].

Now, we shall proceed to the proof of Theorem 1. Perfect
support detection is guaranteed if the requirement

min
i∈K

∣∣aT
i y
∣∣ > max

j /∈K

∣∣aT
j y
∣∣ (49)

is met. Assuming a rectangular receptive field normalization
window of length Lh = Ld

σy[i ] = �Di xi + ei�2 (50)

where xi denotes a stripe of length mLs located around a data
point i , and Di is the submatrix partial dictionary yielding
point y[i ], that is obtained by restricting the dictionary D
to the support of mLs weights corresponding to Lh data
points equally distributed around point i . Denote μ = μ(Di)
(obviously μ = μ(D)) and assume without loss of generality
the dictionary columns are normalized, that is, σdi = 1∀i ∈
[1, M], according to the stripe restricted isometry property
(sRIP) ([39, Definition 14])

(1− (s − 1)μ) �xi�2
2 ≤ �Di xi�2

2 ≤ (1+ (s − 1)μ) �xi�2
2.

(51)

Moreover,

�Di xi�2 ≤
∑
j∈Sh

i

�d j�2�xi�2 ≤ �xi�2. (52)

Then, we can lower-bound the right term in (66) by

min
i∈K

∣∣aT
i y
∣∣ ≥ min

i∈K

∣∣aT
i (y − e)

∣∣− ∣∣aT
i e
∣∣

≥ min
i∈K

∣∣dT
i Dx

∣∣
�Di xi + ei�2

− εs

≥ min
i∈K

∣∣dT
i Di xi

∣∣
�Di xi�2 + �ei�2

− εs

≥ min
i∈K

∣∣dT
i Di xi

∣∣
�xi�2 + �ei�2

− εs

≥ min
i∈K

∣∣dT
i Di xi

∣∣
�xi�1 + εd

− εs

≥ min
i∈K

|x[i ]|dT
i di

�xi�1 + εd
−
∣∣∣∣∣∣
∑

t∈Si
h,t �=i

x[t]dT
i dt

�xi�1 + εd

∣∣∣∣∣∣− εs

≥ min
i∈K

(1+ μ)|x[i ]|
�xi�1 + εd

− μ

⎛
⎝∑

t∈Si
h

|x[t]|
�xi�1

⎞
⎠− εs

≥ min
i∈K

(1+ μ)|x[i ]|
�xi�1 + εd

− μ− εs (53)

where we have used the relation �xi�1 ≥ �xi�2 and assump-
tions A 1–A 3. On the other hand,

max
j /∈K

∣∣aT
j y
∣∣ = max

j /∈K

∣∣dT
j y
∣∣

�D j x j + e j�2
+ |aT

j e|

≤ μ�x j�1

�x j�2
√

1− (s − 1)μ− εd
+ εs

≤
√

sμ�x j�2

�x j�2(
√

1− (s − 1)μ− ε̃d)
+ εs
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≤
√

sμ√
1− (s − 1)μ− ε̃d,∞

+ εs (54)

where we denote ε̃d = (εd/�x j�2), and ε̃d,∞ = (εd/|x|min).
Combining (53) and (54), we require

min
i∈K

|x[i ]|(1+ μ)

�xi�1+εd
−μ−εs >

√
sμ√

1− (s − 1)μ−ε̃d,∞
+ εs.

(55)

It follows that

|x[i ]|
�xi�1 + εd

>
μ

1+ μ

(
1+

√
s√

1− (s − 1)μ− ε̃d,∞

)
+ 2εs

1+ μ
∀i ∈ K . (56)

Taking the worst-case analysis point of view, considering
that �xi�1 ≤ s|xi |max, we deduce

|xi |min

|xi |max + εd
s

>
sμ

1+ μ

(
1+

√
s√

1− (s − 1)μ− ε̃d,∞

)

+ 2 sεs

1+ μ
∀i ∈ K . (57)

In a noise-free model, we have

|xi |min

|xi |max
>

sμ

1+ μ

(
1+

√
s√

1− (s − 1)μ

)
∀i ∈ K . (58)

This completes the proof. �

APPENDIX B
PROOF OF THEOREM 2

Perfect support detection is guaranteed if the requirement

min
i∈K

∣∣aT
i y
∣∣ > max

j /∈K

∣∣aT
j y
∣∣ (59)

is met. When s = 1 assuming y = Dx, we have

min
i∈K

∣∣aT
i y
∣∣ = min

i∈K

∣∣dT
i y
∣∣

�Di xi�2
≥ min

i∈K

∣∣dT
i y
∣∣

�xi�2

≥ min
i∈K

|x[i ]|
|x[i ]|d

T
i di = 1. (60)

On the other hand,

max
j /∈K

∣∣aT
j y
∣∣ = max

j /∈K

∣∣dT
j y
∣∣

�D j x j�2

≤ μ|x j[k j ]|
|x j [k j ]| ≤ μ, k j ∈ K , k j ∈ S j

h . (61)

Since μ < 1, for any 0 < (|x|min/|x|max) ≤ 1, the support
is perfectly recovered at the first iteration using RFN. �

APPENDIX C
PROOF OF THEOREM 3

Recall that we have defined the stripe local energy in (31)
as

σy[k] = �Hyk�2 = �HDkxk�2. (62)

Similar to the sRIP ([39, Definition 14]), we can observe
that

�HDi xi�2
2 = xT

i (HDi)
T HDi xi

≤ |xi |T
[
H2

d + μ(HDi )(1− I)
]|xi |

≤ �Hdxi�2
2 − μ(HDi)�xi�2

2 + μ(HDi )�xi�2
1

≤ �Hdxi�2
2 + (s − 1)μ(HDi )�xi�2

2 (63)

where Hd is a diagonal matrix holding the attenuated atoms �2

norms, namely H2
d = diag(trace((HDi)

T HDi )) and Hd[ j, j ] =
�Hdi

j�2, j ∈ Sh
i , where di

j ∈ R
Lh×1 is the j th atom of the

submatrix Di . Clearly, we also have

�HDi xi�2
2 = xT

i (HDi )
T HDi xi

≥ |xi |T
[
H2

d − μ(HDi )(1− I)
]|xi |

≥ �Hdxi�2
2 + μ(HDi)�xi�2

2 − μ(HDi )�xi�2
1

≥ �Hdxi�2
2 − (s − 1)μ(HDi )�xi�2

2. (64)

By assumption, h is a receptive field normalization kernel
that is monotonically descending away from its center, and
therefore we assume μ(HDi)� μ(Di), and hereafter use the
approximation

σy[k] ≈ �Hd xi�2. (65)

Also, under the separation condition, let us denote hd(ν) �
maxp∈[1,m]Hd[	k + (p − 1)Ls,	k + (p − 1)Ls]. In other
words, hd(ν) is the maximal �2 norm of an atom shifted by
the separation distance multiplied by the RFN window.

As stated above, to guarantee perfect support detection,
we have to show that the requirement

min
i∈K

∣∣aT
i y
∣∣ > max

j /∈K

∣∣aT
j y
∣∣ (66)

is satisfied. We shall begin with the left-hand side term

min
i∈K

∣∣aT
i y
∣∣ ≥ min

i∈K

∣∣dT
i Dx

∣∣
�HDi xi�2

≈ min
i∈K

∣∣dT
i Dx

∣∣
�Hd xi�2

≥ min
i∈K

|x[i ]|
�Hdxi�2

dT
i di −

∣∣∣∣∣∣
∑

t∈Si
h,t �=i

x[t]
�Hdxi�2

dT
i dt

∣∣∣∣∣∣
≥ min

i∈K

|x[i ]| − μ
∑

t∈Si
h,t �=i |x[t]|

�Hd xi�1

≥ min
i∈K

|x[i ]| − μ
∑

t∈Si
h,t �=i |x[t]|

|x[i ]| + hd(ν)
∑

t∈Si
h,t �=i |x[t]|

= 1− (μ+ hd(ν)) max
i∈K

×
∑

t∈Si
h,t �=i |x[t]|

|x[i ]| + hd(ν)
∑

t∈Si
h,t �=i |x[t]|

(67)

where we have used �Hdxi�1 ≤ |x[i ]| + h(ν)
∑

t∈Si
h ,t �=i |x[t]|

since the closest nonzero input entry is at distant 	k samples
from i . Turning now to the right-hand side of (66), we have

max
j /∈K

∣∣aT
j y
∣∣ = max

j /∈K

∣∣dT
j y
∣∣

�HD j x j�2

≤ μ�x j�1

�Hd x j�2
≤ μ�x j�1

hd,min√
s
�x j�1

≤
√

sμ

hd,min
(68)

where we have lower bounded the denominator, assuming
σy[ j ] > τ

�Hd x j�2 ≥ hd,min�x j�2 ≥ hd,min√
s
�x j�1. (69)
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It is worth mentioning that a tighter bound could be obtained
using

max
j /∈K

∣∣aT
j y
∣∣ = max

j /∈K

∣∣dT
j y
∣∣

�HD j x j�2

≤
√

s
∑

k∈Sh
j ,k �= j

∣∣dT
j dk

∣∣|x j [k]|∑
k∈Sh

j ,k �= j Hd[|k − j |]|x j[k]| . (70)

This means that no false detection is guaranteed as long as
√

s
∣∣dT

j dk

∣∣
Hd[|k − j |] < β1 ∀k ∈ Sh

j , j /∈ K . (71)

Combining (67) and (69), and denote �x−i�1 �∑
t∈Si

h,t �=i |x[t]| = �xi�1 − |x[i ]|, we have that as long as
√

sμ

hd,min
< β1 (72)

and
�x−i�1

|x[i ]| + hd(ν)�x−i�1
<

1− β1

μ+ hd(ν)
∀i ∈ K (73)

the true support is fully recovered by RFN thresholding. This
concludes the proof. �

APPENDIX D
EARTH Q-MODEL TIME-VARIANT WAVELETS ESTIMATION

We recall from [27], [34] that we can estimate the set
of time-variant pulses {gσ,n} in (2.2) according to the Earth
Q-model. Namely, we begin with an initial wavelet with a
dominant frequency ω0, for example, the real-valued Ricker
wavelet

g(t) =
(

1− 1

2
ω2

0t2

)
exp

(
−1

4
ω2

0 t2

)
. (74)

In this setting, the scaling parameter is σ = ω−1
0 . Following

the Earth Q-model [29], assuming we know Q [30], a reflected
pulse at travel time tn is

un(t − tn) = Re

{
1

π

∫ ∞
0

G(ω) exp[ j (ωt − κr(ω))]dω

}
(75)

where G(ω) is the Fourier transform of the source waveform
g(t)

κr(ω) �
(

1− j

2Q

)∣∣∣∣ ω

ω0

∣∣∣∣−γ

ωtn

γ � 2

π
tan−1

(
1

2Q

)
≈ 1

π Q
. (76)

Note that in the frequency domain, the phase change
exponential operator represents velocity dispersion, while the
amplitude attenuation exponential operator corresponds to
energy absorption of the traveling pulses

Un(ω) exp− jωtn = G(ω) exp

(
− j

∣∣∣∣ ω

ω0

∣∣∣∣−γ

ωtn

)

× exp

(
−
∣∣∣∣ ω

ω0

∣∣∣∣−γ ωtn
2Q

)
. (77)

The time-domain seismic pulse reflected at two-way travel
time (depth) tn is

un(t − tn) = 1

2π

∫
Un(ω) exp[ jω(t − tn)]dω. (78)

Therefore, the estimated set of pulses {gσ,n} based on the
Earth Q model is defined as

gσ,n(t − tn) = u(t − tn)|σ=ω−1
0

. (79)
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