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Abstract
In seismic data processing, static corrections for near-surface 

velocities are derived from first-break picking. The quality of 
the static corrections is paramount to developing an accurate 
shallow velocity model, a model that in turn greatly impacts the 
subsequent seismic processing steps. Because even small errors 
in first-break picking can greatly impact the seismic velocity 
model building, it is necessary to pick high-quality traveltimes. 
Whereas various artificial intelligence-based methods have been 
proposed to automate the process for data with medium to high 
signal-to-noise ratio (S/N), these methods are not applicable to 
low-S/N data, which still require intensive labor from skilled 
operators. We successfully replace 160 hours of skilled human 
work with 10 hours of processing by a single NVIDIA Quadro 
P6000 graphical processing unit by reducing the number of 
human picks from the usual 5%–10% to 0.19% of available 
gathers. High-quality inferred picks are generated by convolu-
tional neural network-based machine learning trained from the 
human picks.

Introduction
Machine learning approaches have been presented to derive 

first-arrival traveltimes from synthetic data (Yuan et al., 2018; 
Tsai et al., 2020) or data with high signal-to-noise ratio (S/N) 
(Veezhinathan et al., 1991; Murat and Rudman, 1992; McCormack 
et al., 1993; Zhe et al., 2013). We introduce an approach that 
delivers production-quality results on the kind of real-world 
low-S/N land data for which first arrivals are most needed.

Due to the rapid progress in processing power of graphical 
processing units (GPU) and tensor processing units, convolutional 
neural networks (CNNs) (LeCun et al., 1989) have gained wide-
spread popularity in image and video recognition and classification 
as well as in other problems that benefit from their translation 
invariance characteristics. 

In this paper, a production tomographic solution was obtained 
from the inferred results of the neural network (NN) shown in 
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Figure 1. The NN consisted of both CNN and standard dense NN 
layers and was trained on human-picked first-arrival traveltimes.

The goal of the chosen NN architecture was to create a NN 
with good inference capabilities on a very small subset of the 
seismic data (0.19% of the shot gathers) in a nonstationary problem 
situation. The first breaks are a function of a ground-filtered source 
Ricker wavelet and the subsurface impedance characteristics 
around the first reflector. As ground and reflector characteristics 
change spatially and suffer from low S/N (Figure 2) and a dearth 
of training samples, the challenge was to create a NN that did 
not suffer from either high bias or high variance.

The root-mean-square (rms) errors for training/testing data 
sets from many NN architectures (number of layers and units) 
were compared, and the chosen CNN architecture performed 
vastly better (5 ms training/13 ms testing rms error) than the best 
performing deep/wide NN architecture (30 ms training/51.2 ms 
testing rms error).

The training process flow shown in Figure 3 was composed 
of an outlier rejection step to remove spurious human mispicks, 
an NN training/testing data set generator, and the NN itself. The 
outlier rejection step required nonlinear traveltime tomography 
ray-traced traveltimes computed on the set of human-picked 
first-arrival traveltimes. Those picks were used exclusively for the 
outlier rejection step and not directly or indirectly fed into the 
NN to prevent the introduction of a bias.

As the shot gathers’ maximum bandwidth did not exceed 
100 Hz they were downsampled from a 2 to a 4 ms sampling 
interval to decrease needed computational and memory resources. 
The 4 ms-sampled shot gathers and a scalar traveltime pick for 
each provided gather trace were used to train the NN.

During training, the NN attempts to learns the patterns of 
the first-break picks, but as those patterns are obscured by noise 
and may occur sporadically in other locations, the inference process 
flow shown in Figure 4 relied on an outlier filtering step to map 
out such occurrences. The quality of the final tomography attested 
to the soundness of the process.
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Figure 1. NN architecture. Input is batch (b) matrices of s samples traces grouped in sliding windows of w traces. Output is a vector of b traveltime values.
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Methods and procedures
Data organization. Seismic shot gathers are composed of 

sound recordings obtained from a single source and a specific set 
of receivers. Each source/receiver pair recording yields a data 
vector (seismic data trace). In land seismic data acquisition, those 

vectors often suffer from low S/N. The NN input is derived from 
shot gather vectors.

For a set of shot gathers, a skilled human operator will pick 
first arrivals — the NN output, the earliest arrival of source 
energy to each receiver geophone (as opposed to earlier nonsource 

energy recorded by said geophones). 
Such picks contain small errors due to 
the human mechanics of interpretation 
and picking. Therefore, the process flow 
and NN must be able to gracefully 
handle this input/output uncertainty. 
We will describe the design, architec-
ture, and flow that allows for such a 
task to be performed.

Outlier removal. Outlier removal 
is an important step in both training 
and inference workflows. In the training 
workflow, human traveltime picking 
could mistakenly add spurious mis-
placed picks in a small number of 
neighboring traces. In the inference 
workflow, low-S/N input data can lead 
to some NN mispicks.

To perform this task, we computed 
the tomography-based ray-traced trav-
eltimes from the human picks and 
removed picks that were outside a time 
window of ±60 ms around the computed 
ray-traced traveltime.

Training. Let s be the number of 
samples in an input trace. Let w be the 
size in traces of a set of neighboring 
traces that are (1) sorted by receiver 
number for a given shot and (2) centered 
on said input trace. The shot gather was 
initially padded with w / 2 – 1 zero-
sampled leading and trailing traces. For 
each picked travel time value yi at some 
trace i, an input matrix Xi was created 
by collecting the sample values of the 
w traces centered on trace i. 

Shot samples were renormalized by 
their standard deviation, and picked 
traveltime values where renormalized by 
Δt • (s – 1), where Δt is the seismic trace 
sampling interval, thus guaranteeing that 
the pick values lie between 0 and 1.

Let bp be the number of human 
traveltime picks. The previously 
described outlier removal algorithm was 
used to discard any Xi ∈ {1 … bp} for 
which yi lies beyond the clipping range. 
The set of b remaining {Xi, yi} pairs was 
randomly split into training (80%) and 
testing (20%) subsets.

Figure 2. Low S/N gathers from the target data set.

Figure 3. Training/testing flow. Input (X) and output (y) NN training/testing values are extracted from the picked source shot 
gathers.

Figure 4. Inference flow. NN inferred values (y) are extracted from the preprocessed complete set of source shot gathers and 
filtered for outliers.
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We used an Adam optimization algorithm (Kingma and 
Ba, 2015) to train the network described in Figure 1. This 
algorithm uses both first- and second-order moments and 
remains invariant to the diagonal rescaling of gradients. The 
optimizer was set to minimize the rms error cost and use a 
0.0001 learning rate. The training converged smoothly, as can 
be seen in Figure 5. 

Examples of results comparing training and NN output picks 
are shown in Figures 6 and 7.

Training took 7 hours on an NVIDIA Quadro P6000 GPU 
using the keras API in Google’s Tensorflow 2.

Inference. The trained NN was used to process the full set of 
shot gathers composed of bt traces using the flow described in 
Figure 3. Original shot gathers where decomposed into Xi, i ∈ {1 … bt} 
input matrices, from which the NN inferred yi, i ∈ {1 … bt} output 
picks. Those picks were then filtered for outliers with a rejection 
rate of 6.11% for a final set of bf usable picks.

Results can be seen in Figure 7; one can recognize the stability 
of the algorithm in a low-S/N setting.

Inference on the full data set took 3 hours on an NVIDIA 
Quadro P6000 GPU.

Results
The goal of first-break picking is to create a geologically 

accurate near-surface velocity field. To that aim, and to quantify 
and qualify the usefulness of the NN, we computed tomographic 
solutions for both the set of human picks and the set of NN 
inferred picks as shown in Figure 8.

The NN results provided a production-quality tomographic 
solution (shown in Figure 9) of greatly increased resolution and 
accuracy with 10 hours of GPU compute time substituting for 
160 hours of skilled human labor.

Conclusion
We have shown how skilled human labor in the essential process 

of first-break picking can be reduced by 96.2% when complemented 
by a supervised NN. These results were reached with real-world 
land data and no prior knowledge other than that described. 

The initial tomography-based outlier rejection step performed 
extremely well in identifying and removing enough of the NN 
inference busts to yield a stable final tomographic solution.

While the NN weights obtained from one data set cannot be 
expected to work on another data set in a nonstationary and 

Figure 5. Training (red) and testing (blue) rms errors over training epochs.

Figure 6. Training (top) and inferred picks (bottom) for a shot gather. The images show the 
traveltime picks (red) and the ray-traced tomography used for outlier removals (blue).

Figure 7. Training (top) and inferred picks (bottom) for a shot gather. The images show the 
traveltime picks (red) and the ray-traced tomography used for outlier removals (blue).
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Figure 9. Comparison of two tomography-computed velocity field time slices using human picks (top) or NN picks (bottom)

Figure 8. Inferred travel time picks (red) and ray-traced tomography used for outlier removals (blue) for various shot gathers.

geology-dependent situation, the described NN architecture did 
not suffer from high bias or variance and is hence expected to be 
retrainable unmodified on new data. 

Data and materials availability
Data associated with this research are confidential and cannot 

be released.
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