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Summary 
 
We present a nonlinear processing methodology designed 
to separate out various structures in the seismic data. This 
methodology builds on the strategy of decomposing 
seismic data into simple and complex parts (see Lau et al 
2008) in which a variational minimization approach 
extracts the simple structure and complex structure.  This 
paper presents an alternative construction using diffusion 
semigroups.  It is a nonlinear method like the variational 
method.  But it does have the advantage of controlling the 
components in the nonlinear decomposition .  We show that 
by using various diffusion geometric tools we can build 
nonlinear filters which enable a decomposition of the data 
into various intrinsic substructures designed to facilitate 
interpretation tasks. 
 
 
Introduction 
 
It is very useful to decompose seismic data (prestack or 
poststack) into different components.  The applications of 
such decompositions can be found in signal processing,  
data compression,  coherent energy useful for structural 
interpretation, complex stratigraphy, etc.  Seismic 
decompositions can roughly be divided into two categories 
of algorithms. 
 
The first category is using a predetermined basis.  
Examples of such method are Fourier decomposition and 
wavelet transform. The basic building blocks have definite 
geometric shapes. It yields fast decomposition.  But in 
general, these are linear decompositions where the 
superposition of the components yields the original input 
data. 
 
The second category is projection methods like SVD 
(singular value decomposition) which defines the 
projections (basis elements) based on the input data.  The 
geometric shape of each projection is not predetermined.  
The approach here is that complex objects cannot be fitted 
into a predetermined basis.  The connectivity and 
conductivity of objects like network or images determine 
the projections (basis elements) to be used.  The geometry 
of each projection is data dependent. 
 
Diffusion geometry using the Markov semigroup approach 
belongs to the second category.   It employs the concept of 
affinity in the seismic data to determine the local geometry.  

Then the local geometry determines the diffusion 
semigroup which in turn determines the global geometry of 
the data. 
 
Methodology 
 
To motivate diffusion geometry and semigroup,  we will 
start with a 2-D image first.  The left side of figure 1 shows 
a crossplot which looks like an inner dense circle and outer 
ring of dense points.  The input crossplot is nonlinear in the 
sense that no line could separate the inner and outer circle.  
The first thing to do with a diffusion geometry is to define 
affinity.  Affinity is analogous to a generalized distance 
function.  Once that is done,  we will use a transformation 
of the affinity to a Euclidean geometry (see right side of 
figure 1).  The mathematics can be found in Coifman et al 
(Proceedings of National Academy of Science 2005 ).  
Notice that in the transformed space on the right,  the inner 
and outer circles can be separated roughly into linear 
components (left and right sides of the transformed plot of 
the first 3 eigenfunctions). 
 
We want to show another crossplot example in figure 2 to  
further illustrate the change in the geometry of the original 
input data versus the transformed diffusion coordinates. 
The long term diffusion of heterogeneous material is 
remapped. The left circular region in the input data has a 
higher proportion of heat conducting material, thereby 
reducing the diffusion distance among points (top to 
bottom).  In contrast, the bottle neck in the middle increases 
that distance between the two lobes, and shows that the 
right lobe is more uniformly distributed.  The idea here is 
that Euclidean distance in the original crossplot does not 
tell us how close things are in a diffusion geometry, while 
the right image provides an intrinsic assessment.  To 
achieve this we need to define an appropriate affinity (or 
distance) and transform it to a domain where Euclidean 
distance is more informative. 
 
In particular we show that by considering for a given 
seismic volume the collection of all 3-D data blocks of size  
9x9x9, as a data base,  to be organized through diffusion 
geometry we can extract and separate reflections and 
various other structures. A simple Markov matrix that 
defines the diffusion on the collection of blocks can be 
defined as follows: 
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The eigenvectors of A enable the construction of nonlinear 
filters on the seismic volumes. 
 
 
Processing steps 
 
The dataset is a marine data set after PSTM (prestack time 
migration) and the output gathers are offset gathers.  A 4-
dimensional volume is input to the diffusion semigroup 
program.  The 4 dimensions are inline, crossline, offset and 
time.  We will show what the diffusion geometric 
eigenfunctions look like in the stack domain.   The 
diffusion is done on all 4 dimensions in the prestack 
domain but it is easier to show the results in the stacks. 
. 
Step 1.  Check conventional decomposition like Fourier 
domain or wavelet domain.   See figure 3 for different 
bandwidths of the input stack.   This gives us some idea of 
how to drive the higher eigenfunctions.  It is an important 
QC plot to show when high frequencies will break up in 
terms of interpretation. 
 
Step 2.   Determine the distance definition (affinity) for the 
seismic data.   This method is not restricted by 
dimensionality.  It can be used for gathers to find 
subtractions or similarities in a prestack domain.   But we 
will illustrate the eigenfunctions in the stack domain after 
diffusion semigroup decomposition as in figure 4.  Only 3 
eigenfunctions are displayed. 
 
Step 3.  Calculate the cumulative eigenfunctions.   This is 
to organize the various eigenfunctions (projections) so that 
progressive cumulations of the eigenfunctions give 
progressively more details.  Figure 5 shows only three 
cumulations.  So cum-2 would mean the cumulation of the 
first two eigenfunctions,  cum-5 the cumulation of the first 
5 eigenfunctions,  etc. 
 
Step 4.  To calculate the complex part of the cumulations,  
test various differences between the cumulations.   The 
complex part is the difference cube which allows detailed 
stratigraphic interpretation or detail fault patterns.  See 
figure 6 right most panel. 
 
 
 
 
 
 

Discussion  
 
We can compare the diffusion semigroup decomposition 
with previous nonlinear decomposition method.  One such 
decomposition is the variational decomposition mentioned 
in the beginning.   This is the complex decomposition of 
seismic data into simple and complex part where the simple 
part is the part of the data which obeys the VN (variational 
norm which is a mixed L1 and L2 norm).  The result from 
VN is shown in figure 8. The complex part (rightmost 
panel) of figure 8 should be compared with the “complex 
part” of the diffusion semigroup which is the rightmost part 
of figure 6. 
 
Another point of discussion is that the cum-2 (first 2 
eigenfunctions) in figure 5 carries almost all the salient 
features of the seismic image.   It is extremely powerful to 
use only 2 eigenvalues to characterize the full picture.   
Other projection methods like SVD cannot comprehend the 
geometric nature of data.  Fourier decomposition (low pass 
in figure 3) cannot capture the salient features. 
 
For completeness , we show Figures 8-10 which are  the 
time slices for different cubes with different groupings of 
the eigenfunctions.   They are analogous to time slices of 
low, mid and high “bandwidths” which comprise of the 
low, mid and high grouping of eigenfunctions. 
 
 
 
Application to processing parameters  
 
Instead of 1000 points in a crossplot as in figure 1 and 
figure 2,  we could generate 1000 cubes very easily in 
seismic processing.  We can use 3 parameters like velocity, 
mute and filtering.  We can parametrize velocity (10 
different velocity functions) and mute (10 different 
inside/outside mutes) and filter (10 different bandwidths).   
Then we have 1000 stack cubes to view since we have 
combinations of 10x10x10.  Diffusion semigroup will 
organize these 1000 cubes in the transform space so that 
one could view just 10 to 20 cubes rather than 1000 cubes.   
 
Our traditional decision process is to fix one parameter at a 
time.  We can start with velocity.  Make our pick.   Then go 
to the next parameter like mute.  Make our pick.  Then 
finally bandwidth. Make our pick.  We cannot see the 
various combinations of velocities, mutes and bandwidths 
simultaneously if we use the traditional sequential decision 
process. 
 
 
 
 
 



Diffusion  semigroup 

Conclusion  
 
Diffusion semigroup is a nonlinear decomposition method 
which is extremely fast and is amenable to handling high 
dimensional seismic data.  Let us take the example of time 
lapse data.  If we have surveys which are parametrized by 
inline, crossline, offset, azimuth, depth and time lapse,  that 
would be a 6-D problem.   Diffusion semigroup will project 
the 6-D volume into different eigenfunctions which can be 
used to do subtractions or similarities.   If other attributes 
are involved outside the normal seismic reflectivities,  there 
will not be any re-coding of the diffusion semigroup.  
These other attribute cubes could be added with the same 
algorithm. 
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